Metamath Proof Explorer


Theorem pntrval

Description: Define the residual of the second Chebyshev function. The goal is to have R ( x ) e. o ( x ) , or R ( x ) / x ~>r 0 . (Contributed by Mario Carneiro, 8-Apr-2016)

Ref Expression
Hypothesis pntrval.r 𝑅 = ( 𝑎 ∈ ℝ+ ↦ ( ( ψ ‘ 𝑎 ) − 𝑎 ) )
Assertion pntrval ( 𝐴 ∈ ℝ+ → ( 𝑅𝐴 ) = ( ( ψ ‘ 𝐴 ) − 𝐴 ) )

Proof

Step Hyp Ref Expression
1 pntrval.r 𝑅 = ( 𝑎 ∈ ℝ+ ↦ ( ( ψ ‘ 𝑎 ) − 𝑎 ) )
2 fveq2 ( 𝑎 = 𝐴 → ( ψ ‘ 𝑎 ) = ( ψ ‘ 𝐴 ) )
3 id ( 𝑎 = 𝐴𝑎 = 𝐴 )
4 2 3 oveq12d ( 𝑎 = 𝐴 → ( ( ψ ‘ 𝑎 ) − 𝑎 ) = ( ( ψ ‘ 𝐴 ) − 𝐴 ) )
5 ovex ( ( ψ ‘ 𝐴 ) − 𝐴 ) ∈ V
6 4 1 5 fvmpt ( 𝐴 ∈ ℝ+ → ( 𝑅𝐴 ) = ( ( ψ ‘ 𝐴 ) − 𝐴 ) )