Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic number theory
The Prime Number Theorem
pntrval
Metamath Proof Explorer
Description: Define the residual of the second Chebyshev function. The goal is to
have R ( x ) e. o ( x ) , or R ( x ) / x ~>r 0 . (Contributed by Mario Carneiro , 8-Apr-2016)
Ref
Expression
Hypothesis
pntrval.r
⊢ 𝑅 = ( 𝑎 ∈ ℝ+ ↦ ( ( ψ ‘ 𝑎 ) − 𝑎 ) )
Assertion
pntrval
⊢ ( 𝐴 ∈ ℝ+ → ( 𝑅 ‘ 𝐴 ) = ( ( ψ ‘ 𝐴 ) − 𝐴 ) )
Proof
Step
Hyp
Ref
Expression
1
pntrval.r
⊢ 𝑅 = ( 𝑎 ∈ ℝ+ ↦ ( ( ψ ‘ 𝑎 ) − 𝑎 ) )
2
fveq2
⊢ ( 𝑎 = 𝐴 → ( ψ ‘ 𝑎 ) = ( ψ ‘ 𝐴 ) )
3
id
⊢ ( 𝑎 = 𝐴 → 𝑎 = 𝐴 )
4
2 3
oveq12d
⊢ ( 𝑎 = 𝐴 → ( ( ψ ‘ 𝑎 ) − 𝑎 ) = ( ( ψ ‘ 𝐴 ) − 𝐴 ) )
5
ovex
⊢ ( ( ψ ‘ 𝐴 ) − 𝐴 ) ∈ V
6
4 1 5
fvmpt
⊢ ( 𝐴 ∈ ℝ+ → ( 𝑅 ‘ 𝐴 ) = ( ( ψ ‘ 𝐴 ) − 𝐴 ) )