| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pntsval.1 | ⊢ 𝑆  =  ( 𝑎  ∈  ℝ  ↦  Σ 𝑖  ∈  ( 1 ... ( ⌊ ‘ 𝑎 ) ) ( ( Λ ‘ 𝑖 )  ·  ( ( log ‘ 𝑖 )  +  ( ψ ‘ ( 𝑎  /  𝑖 ) ) ) ) ) | 
						
							| 2 |  | fzfid | ⊢ ( 𝑎  ∈  ℝ  →  ( 1 ... ( ⌊ ‘ 𝑎 ) )  ∈  Fin ) | 
						
							| 3 |  | elfznn | ⊢ ( 𝑖  ∈  ( 1 ... ( ⌊ ‘ 𝑎 ) )  →  𝑖  ∈  ℕ ) | 
						
							| 4 | 3 | adantl | ⊢ ( ( 𝑎  ∈  ℝ  ∧  𝑖  ∈  ( 1 ... ( ⌊ ‘ 𝑎 ) ) )  →  𝑖  ∈  ℕ ) | 
						
							| 5 |  | vmacl | ⊢ ( 𝑖  ∈  ℕ  →  ( Λ ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 6 | 4 5 | syl | ⊢ ( ( 𝑎  ∈  ℝ  ∧  𝑖  ∈  ( 1 ... ( ⌊ ‘ 𝑎 ) ) )  →  ( Λ ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 7 | 4 | nnrpd | ⊢ ( ( 𝑎  ∈  ℝ  ∧  𝑖  ∈  ( 1 ... ( ⌊ ‘ 𝑎 ) ) )  →  𝑖  ∈  ℝ+ ) | 
						
							| 8 | 7 | relogcld | ⊢ ( ( 𝑎  ∈  ℝ  ∧  𝑖  ∈  ( 1 ... ( ⌊ ‘ 𝑎 ) ) )  →  ( log ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 9 |  | simpl | ⊢ ( ( 𝑎  ∈  ℝ  ∧  𝑖  ∈  ( 1 ... ( ⌊ ‘ 𝑎 ) ) )  →  𝑎  ∈  ℝ ) | 
						
							| 10 | 9 4 | nndivred | ⊢ ( ( 𝑎  ∈  ℝ  ∧  𝑖  ∈  ( 1 ... ( ⌊ ‘ 𝑎 ) ) )  →  ( 𝑎  /  𝑖 )  ∈  ℝ ) | 
						
							| 11 |  | chpcl | ⊢ ( ( 𝑎  /  𝑖 )  ∈  ℝ  →  ( ψ ‘ ( 𝑎  /  𝑖 ) )  ∈  ℝ ) | 
						
							| 12 | 10 11 | syl | ⊢ ( ( 𝑎  ∈  ℝ  ∧  𝑖  ∈  ( 1 ... ( ⌊ ‘ 𝑎 ) ) )  →  ( ψ ‘ ( 𝑎  /  𝑖 ) )  ∈  ℝ ) | 
						
							| 13 | 8 12 | readdcld | ⊢ ( ( 𝑎  ∈  ℝ  ∧  𝑖  ∈  ( 1 ... ( ⌊ ‘ 𝑎 ) ) )  →  ( ( log ‘ 𝑖 )  +  ( ψ ‘ ( 𝑎  /  𝑖 ) ) )  ∈  ℝ ) | 
						
							| 14 | 6 13 | remulcld | ⊢ ( ( 𝑎  ∈  ℝ  ∧  𝑖  ∈  ( 1 ... ( ⌊ ‘ 𝑎 ) ) )  →  ( ( Λ ‘ 𝑖 )  ·  ( ( log ‘ 𝑖 )  +  ( ψ ‘ ( 𝑎  /  𝑖 ) ) ) )  ∈  ℝ ) | 
						
							| 15 | 2 14 | fsumrecl | ⊢ ( 𝑎  ∈  ℝ  →  Σ 𝑖  ∈  ( 1 ... ( ⌊ ‘ 𝑎 ) ) ( ( Λ ‘ 𝑖 )  ·  ( ( log ‘ 𝑖 )  +  ( ψ ‘ ( 𝑎  /  𝑖 ) ) ) )  ∈  ℝ ) | 
						
							| 16 | 1 15 | fmpti | ⊢ 𝑆 : ℝ ⟶ ℝ |