Metamath Proof Explorer


Theorem pntsf

Description: Functionality of the Selberg function. (Contributed by Mario Carneiro, 31-May-2016)

Ref Expression
Hypothesis pntsval.1 𝑆 = ( 𝑎 ∈ ℝ ↦ Σ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑎 ) ) ( ( Λ ‘ 𝑖 ) · ( ( log ‘ 𝑖 ) + ( ψ ‘ ( 𝑎 / 𝑖 ) ) ) ) )
Assertion pntsf 𝑆 : ℝ ⟶ ℝ

Proof

Step Hyp Ref Expression
1 pntsval.1 𝑆 = ( 𝑎 ∈ ℝ ↦ Σ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑎 ) ) ( ( Λ ‘ 𝑖 ) · ( ( log ‘ 𝑖 ) + ( ψ ‘ ( 𝑎 / 𝑖 ) ) ) ) )
2 fzfid ( 𝑎 ∈ ℝ → ( 1 ... ( ⌊ ‘ 𝑎 ) ) ∈ Fin )
3 elfznn ( 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑎 ) ) → 𝑖 ∈ ℕ )
4 3 adantl ( ( 𝑎 ∈ ℝ ∧ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑎 ) ) ) → 𝑖 ∈ ℕ )
5 vmacl ( 𝑖 ∈ ℕ → ( Λ ‘ 𝑖 ) ∈ ℝ )
6 4 5 syl ( ( 𝑎 ∈ ℝ ∧ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑎 ) ) ) → ( Λ ‘ 𝑖 ) ∈ ℝ )
7 4 nnrpd ( ( 𝑎 ∈ ℝ ∧ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑎 ) ) ) → 𝑖 ∈ ℝ+ )
8 7 relogcld ( ( 𝑎 ∈ ℝ ∧ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑎 ) ) ) → ( log ‘ 𝑖 ) ∈ ℝ )
9 simpl ( ( 𝑎 ∈ ℝ ∧ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑎 ) ) ) → 𝑎 ∈ ℝ )
10 9 4 nndivred ( ( 𝑎 ∈ ℝ ∧ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑎 ) ) ) → ( 𝑎 / 𝑖 ) ∈ ℝ )
11 chpcl ( ( 𝑎 / 𝑖 ) ∈ ℝ → ( ψ ‘ ( 𝑎 / 𝑖 ) ) ∈ ℝ )
12 10 11 syl ( ( 𝑎 ∈ ℝ ∧ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑎 ) ) ) → ( ψ ‘ ( 𝑎 / 𝑖 ) ) ∈ ℝ )
13 8 12 readdcld ( ( 𝑎 ∈ ℝ ∧ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑎 ) ) ) → ( ( log ‘ 𝑖 ) + ( ψ ‘ ( 𝑎 / 𝑖 ) ) ) ∈ ℝ )
14 6 13 remulcld ( ( 𝑎 ∈ ℝ ∧ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑎 ) ) ) → ( ( Λ ‘ 𝑖 ) · ( ( log ‘ 𝑖 ) + ( ψ ‘ ( 𝑎 / 𝑖 ) ) ) ) ∈ ℝ )
15 2 14 fsumrecl ( 𝑎 ∈ ℝ → Σ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑎 ) ) ( ( Λ ‘ 𝑖 ) · ( ( log ‘ 𝑖 ) + ( ψ ‘ ( 𝑎 / 𝑖 ) ) ) ) ∈ ℝ )
16 1 15 fmpti 𝑆 : ℝ ⟶ ℝ