Step |
Hyp |
Ref |
Expression |
1 |
|
pntsval.1 |
⊢ 𝑆 = ( 𝑎 ∈ ℝ ↦ Σ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑎 ) ) ( ( Λ ‘ 𝑖 ) · ( ( log ‘ 𝑖 ) + ( ψ ‘ ( 𝑎 / 𝑖 ) ) ) ) ) |
2 |
|
fzfid |
⊢ ( 𝑎 ∈ ℝ → ( 1 ... ( ⌊ ‘ 𝑎 ) ) ∈ Fin ) |
3 |
|
elfznn |
⊢ ( 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑎 ) ) → 𝑖 ∈ ℕ ) |
4 |
3
|
adantl |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑎 ) ) ) → 𝑖 ∈ ℕ ) |
5 |
|
vmacl |
⊢ ( 𝑖 ∈ ℕ → ( Λ ‘ 𝑖 ) ∈ ℝ ) |
6 |
4 5
|
syl |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑎 ) ) ) → ( Λ ‘ 𝑖 ) ∈ ℝ ) |
7 |
4
|
nnrpd |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑎 ) ) ) → 𝑖 ∈ ℝ+ ) |
8 |
7
|
relogcld |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑎 ) ) ) → ( log ‘ 𝑖 ) ∈ ℝ ) |
9 |
|
simpl |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑎 ) ) ) → 𝑎 ∈ ℝ ) |
10 |
9 4
|
nndivred |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑎 ) ) ) → ( 𝑎 / 𝑖 ) ∈ ℝ ) |
11 |
|
chpcl |
⊢ ( ( 𝑎 / 𝑖 ) ∈ ℝ → ( ψ ‘ ( 𝑎 / 𝑖 ) ) ∈ ℝ ) |
12 |
10 11
|
syl |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑎 ) ) ) → ( ψ ‘ ( 𝑎 / 𝑖 ) ) ∈ ℝ ) |
13 |
8 12
|
readdcld |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑎 ) ) ) → ( ( log ‘ 𝑖 ) + ( ψ ‘ ( 𝑎 / 𝑖 ) ) ) ∈ ℝ ) |
14 |
6 13
|
remulcld |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑎 ) ) ) → ( ( Λ ‘ 𝑖 ) · ( ( log ‘ 𝑖 ) + ( ψ ‘ ( 𝑎 / 𝑖 ) ) ) ) ∈ ℝ ) |
15 |
2 14
|
fsumrecl |
⊢ ( 𝑎 ∈ ℝ → Σ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑎 ) ) ( ( Λ ‘ 𝑖 ) · ( ( log ‘ 𝑖 ) + ( ψ ‘ ( 𝑎 / 𝑖 ) ) ) ) ∈ ℝ ) |
16 |
1 15
|
fmpti |
⊢ 𝑆 : ℝ ⟶ ℝ |