Step |
Hyp |
Ref |
Expression |
1 |
|
pntsval.1 |
⊢ 𝑆 = ( 𝑎 ∈ ℝ ↦ Σ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑎 ) ) ( ( Λ ‘ 𝑖 ) · ( ( log ‘ 𝑖 ) + ( ψ ‘ ( 𝑎 / 𝑖 ) ) ) ) ) |
2 |
|
fveq2 |
⊢ ( 𝑖 = 𝑛 → ( Λ ‘ 𝑖 ) = ( Λ ‘ 𝑛 ) ) |
3 |
|
fveq2 |
⊢ ( 𝑖 = 𝑛 → ( log ‘ 𝑖 ) = ( log ‘ 𝑛 ) ) |
4 |
|
oveq2 |
⊢ ( 𝑖 = 𝑛 → ( 𝑎 / 𝑖 ) = ( 𝑎 / 𝑛 ) ) |
5 |
4
|
fveq2d |
⊢ ( 𝑖 = 𝑛 → ( ψ ‘ ( 𝑎 / 𝑖 ) ) = ( ψ ‘ ( 𝑎 / 𝑛 ) ) ) |
6 |
3 5
|
oveq12d |
⊢ ( 𝑖 = 𝑛 → ( ( log ‘ 𝑖 ) + ( ψ ‘ ( 𝑎 / 𝑖 ) ) ) = ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑎 / 𝑛 ) ) ) ) |
7 |
2 6
|
oveq12d |
⊢ ( 𝑖 = 𝑛 → ( ( Λ ‘ 𝑖 ) · ( ( log ‘ 𝑖 ) + ( ψ ‘ ( 𝑎 / 𝑖 ) ) ) ) = ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑎 / 𝑛 ) ) ) ) ) |
8 |
7
|
cbvsumv |
⊢ Σ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑎 ) ) ( ( Λ ‘ 𝑖 ) · ( ( log ‘ 𝑖 ) + ( ψ ‘ ( 𝑎 / 𝑖 ) ) ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑎 ) ) ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑎 / 𝑛 ) ) ) ) |
9 |
|
fveq2 |
⊢ ( 𝑎 = 𝐴 → ( ⌊ ‘ 𝑎 ) = ( ⌊ ‘ 𝐴 ) ) |
10 |
9
|
oveq2d |
⊢ ( 𝑎 = 𝐴 → ( 1 ... ( ⌊ ‘ 𝑎 ) ) = ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) |
11 |
|
fvoveq1 |
⊢ ( 𝑎 = 𝐴 → ( ψ ‘ ( 𝑎 / 𝑛 ) ) = ( ψ ‘ ( 𝐴 / 𝑛 ) ) ) |
12 |
11
|
oveq2d |
⊢ ( 𝑎 = 𝐴 → ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑎 / 𝑛 ) ) ) = ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝐴 / 𝑛 ) ) ) ) |
13 |
12
|
oveq2d |
⊢ ( 𝑎 = 𝐴 → ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑎 / 𝑛 ) ) ) ) = ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) |
14 |
13
|
adantr |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑎 ) ) ) → ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑎 / 𝑛 ) ) ) ) = ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) |
15 |
10 14
|
sumeq12dv |
⊢ ( 𝑎 = 𝐴 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑎 ) ) ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑎 / 𝑛 ) ) ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) |
16 |
8 15
|
eqtrid |
⊢ ( 𝑎 = 𝐴 → Σ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑎 ) ) ( ( Λ ‘ 𝑖 ) · ( ( log ‘ 𝑖 ) + ( ψ ‘ ( 𝑎 / 𝑖 ) ) ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) |
17 |
|
sumex |
⊢ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝐴 / 𝑛 ) ) ) ) ∈ V |
18 |
16 1 17
|
fvmpt |
⊢ ( 𝐴 ∈ ℝ → ( 𝑆 ‘ 𝐴 ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) |