| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pntsval.1 | ⊢ 𝑆  =  ( 𝑎  ∈  ℝ  ↦  Σ 𝑖  ∈  ( 1 ... ( ⌊ ‘ 𝑎 ) ) ( ( Λ ‘ 𝑖 )  ·  ( ( log ‘ 𝑖 )  +  ( ψ ‘ ( 𝑎  /  𝑖 ) ) ) ) ) | 
						
							| 2 |  | fveq2 | ⊢ ( 𝑖  =  𝑛  →  ( Λ ‘ 𝑖 )  =  ( Λ ‘ 𝑛 ) ) | 
						
							| 3 |  | fveq2 | ⊢ ( 𝑖  =  𝑛  →  ( log ‘ 𝑖 )  =  ( log ‘ 𝑛 ) ) | 
						
							| 4 |  | oveq2 | ⊢ ( 𝑖  =  𝑛  →  ( 𝑎  /  𝑖 )  =  ( 𝑎  /  𝑛 ) ) | 
						
							| 5 | 4 | fveq2d | ⊢ ( 𝑖  =  𝑛  →  ( ψ ‘ ( 𝑎  /  𝑖 ) )  =  ( ψ ‘ ( 𝑎  /  𝑛 ) ) ) | 
						
							| 6 | 3 5 | oveq12d | ⊢ ( 𝑖  =  𝑛  →  ( ( log ‘ 𝑖 )  +  ( ψ ‘ ( 𝑎  /  𝑖 ) ) )  =  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑎  /  𝑛 ) ) ) ) | 
						
							| 7 | 2 6 | oveq12d | ⊢ ( 𝑖  =  𝑛  →  ( ( Λ ‘ 𝑖 )  ·  ( ( log ‘ 𝑖 )  +  ( ψ ‘ ( 𝑎  /  𝑖 ) ) ) )  =  ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑎  /  𝑛 ) ) ) ) ) | 
						
							| 8 | 7 | cbvsumv | ⊢ Σ 𝑖  ∈  ( 1 ... ( ⌊ ‘ 𝑎 ) ) ( ( Λ ‘ 𝑖 )  ·  ( ( log ‘ 𝑖 )  +  ( ψ ‘ ( 𝑎  /  𝑖 ) ) ) )  =  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑎 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑎  /  𝑛 ) ) ) ) | 
						
							| 9 |  | fveq2 | ⊢ ( 𝑎  =  𝐴  →  ( ⌊ ‘ 𝑎 )  =  ( ⌊ ‘ 𝐴 ) ) | 
						
							| 10 | 9 | oveq2d | ⊢ ( 𝑎  =  𝐴  →  ( 1 ... ( ⌊ ‘ 𝑎 ) )  =  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) | 
						
							| 11 |  | fvoveq1 | ⊢ ( 𝑎  =  𝐴  →  ( ψ ‘ ( 𝑎  /  𝑛 ) )  =  ( ψ ‘ ( 𝐴  /  𝑛 ) ) ) | 
						
							| 12 | 11 | oveq2d | ⊢ ( 𝑎  =  𝐴  →  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑎  /  𝑛 ) ) )  =  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝐴  /  𝑛 ) ) ) ) | 
						
							| 13 | 12 | oveq2d | ⊢ ( 𝑎  =  𝐴  →  ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑎  /  𝑛 ) ) ) )  =  ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝐴  /  𝑛 ) ) ) ) ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝑎  =  𝐴  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑎 ) ) )  →  ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑎  /  𝑛 ) ) ) )  =  ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝐴  /  𝑛 ) ) ) ) ) | 
						
							| 15 | 10 14 | sumeq12dv | ⊢ ( 𝑎  =  𝐴  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑎 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝑎  /  𝑛 ) ) ) )  =  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝐴  /  𝑛 ) ) ) ) ) | 
						
							| 16 | 8 15 | eqtrid | ⊢ ( 𝑎  =  𝐴  →  Σ 𝑖  ∈  ( 1 ... ( ⌊ ‘ 𝑎 ) ) ( ( Λ ‘ 𝑖 )  ·  ( ( log ‘ 𝑖 )  +  ( ψ ‘ ( 𝑎  /  𝑖 ) ) ) )  =  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝐴  /  𝑛 ) ) ) ) ) | 
						
							| 17 |  | sumex | ⊢ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝐴  /  𝑛 ) ) ) )  ∈  V | 
						
							| 18 | 16 1 17 | fvmpt | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝑆 ‘ 𝐴 )  =  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ 𝑛 )  +  ( ψ ‘ ( 𝐴  /  𝑛 ) ) ) ) ) |