Metamath Proof Explorer


Theorem pntsval

Description: Define the "Selberg function", whose asymptotic behavior is the content of selberg . (Contributed by Mario Carneiro, 31-May-2016)

Ref Expression
Hypothesis pntsval.1 𝑆 = ( 𝑎 ∈ ℝ ↦ Σ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑎 ) ) ( ( Λ ‘ 𝑖 ) · ( ( log ‘ 𝑖 ) + ( ψ ‘ ( 𝑎 / 𝑖 ) ) ) ) )
Assertion pntsval ( 𝐴 ∈ ℝ → ( 𝑆𝐴 ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝐴 / 𝑛 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 pntsval.1 𝑆 = ( 𝑎 ∈ ℝ ↦ Σ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑎 ) ) ( ( Λ ‘ 𝑖 ) · ( ( log ‘ 𝑖 ) + ( ψ ‘ ( 𝑎 / 𝑖 ) ) ) ) )
2 fveq2 ( 𝑖 = 𝑛 → ( Λ ‘ 𝑖 ) = ( Λ ‘ 𝑛 ) )
3 fveq2 ( 𝑖 = 𝑛 → ( log ‘ 𝑖 ) = ( log ‘ 𝑛 ) )
4 oveq2 ( 𝑖 = 𝑛 → ( 𝑎 / 𝑖 ) = ( 𝑎 / 𝑛 ) )
5 4 fveq2d ( 𝑖 = 𝑛 → ( ψ ‘ ( 𝑎 / 𝑖 ) ) = ( ψ ‘ ( 𝑎 / 𝑛 ) ) )
6 3 5 oveq12d ( 𝑖 = 𝑛 → ( ( log ‘ 𝑖 ) + ( ψ ‘ ( 𝑎 / 𝑖 ) ) ) = ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑎 / 𝑛 ) ) ) )
7 2 6 oveq12d ( 𝑖 = 𝑛 → ( ( Λ ‘ 𝑖 ) · ( ( log ‘ 𝑖 ) + ( ψ ‘ ( 𝑎 / 𝑖 ) ) ) ) = ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑎 / 𝑛 ) ) ) ) )
8 7 cbvsumv Σ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑎 ) ) ( ( Λ ‘ 𝑖 ) · ( ( log ‘ 𝑖 ) + ( ψ ‘ ( 𝑎 / 𝑖 ) ) ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑎 ) ) ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑎 / 𝑛 ) ) ) )
9 fveq2 ( 𝑎 = 𝐴 → ( ⌊ ‘ 𝑎 ) = ( ⌊ ‘ 𝐴 ) )
10 9 oveq2d ( 𝑎 = 𝐴 → ( 1 ... ( ⌊ ‘ 𝑎 ) ) = ( 1 ... ( ⌊ ‘ 𝐴 ) ) )
11 fvoveq1 ( 𝑎 = 𝐴 → ( ψ ‘ ( 𝑎 / 𝑛 ) ) = ( ψ ‘ ( 𝐴 / 𝑛 ) ) )
12 11 oveq2d ( 𝑎 = 𝐴 → ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑎 / 𝑛 ) ) ) = ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝐴 / 𝑛 ) ) ) )
13 12 oveq2d ( 𝑎 = 𝐴 → ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑎 / 𝑛 ) ) ) ) = ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝐴 / 𝑛 ) ) ) ) )
14 13 adantr ( ( 𝑎 = 𝐴𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑎 ) ) ) → ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑎 / 𝑛 ) ) ) ) = ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝐴 / 𝑛 ) ) ) ) )
15 10 14 sumeq12dv ( 𝑎 = 𝐴 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑎 ) ) ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝑎 / 𝑛 ) ) ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝐴 / 𝑛 ) ) ) ) )
16 8 15 syl5eq ( 𝑎 = 𝐴 → Σ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑎 ) ) ( ( Λ ‘ 𝑖 ) · ( ( log ‘ 𝑖 ) + ( ψ ‘ ( 𝑎 / 𝑖 ) ) ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝐴 / 𝑛 ) ) ) ) )
17 sumex Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝐴 / 𝑛 ) ) ) ) ∈ V
18 16 1 17 fvmpt ( 𝐴 ∈ ℝ → ( 𝑆𝐴 ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( Λ ‘ 𝑛 ) · ( ( log ‘ 𝑛 ) + ( ψ ‘ ( 𝐴 / 𝑛 ) ) ) ) )