| Step | Hyp | Ref | Expression | 
						
							| 1 |  | breq1 | ⊢ ( 𝐴  =  𝐵  →  ( 𝐴 𝑅 𝐵  ↔  𝐵 𝑅 𝐵 ) ) | 
						
							| 2 |  | poirr | ⊢ ( ( 𝑅  Po  𝑉  ∧  𝐵  ∈  𝑉 )  →  ¬  𝐵 𝑅 𝐵 ) | 
						
							| 3 | 2 | adantrl | ⊢ ( ( 𝑅  Po  𝑉  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 ) )  →  ¬  𝐵 𝑅 𝐵 ) | 
						
							| 4 | 3 | pm2.21d | ⊢ ( ( 𝑅  Po  𝑉  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 ) )  →  ( 𝐵 𝑅 𝐵  →  𝐴  ≠  𝐵 ) ) | 
						
							| 5 | 4 | ex | ⊢ ( 𝑅  Po  𝑉  →  ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ( 𝐵 𝑅 𝐵  →  𝐴  ≠  𝐵 ) ) ) | 
						
							| 6 | 5 | com13 | ⊢ ( 𝐵 𝑅 𝐵  →  ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ( 𝑅  Po  𝑉  →  𝐴  ≠  𝐵 ) ) ) | 
						
							| 7 | 1 6 | biimtrdi | ⊢ ( 𝐴  =  𝐵  →  ( 𝐴 𝑅 𝐵  →  ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ( 𝑅  Po  𝑉  →  𝐴  ≠  𝐵 ) ) ) ) | 
						
							| 8 | 7 | com24 | ⊢ ( 𝐴  =  𝐵  →  ( 𝑅  Po  𝑉  →  ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ( 𝐴 𝑅 𝐵  →  𝐴  ≠  𝐵 ) ) ) ) | 
						
							| 9 | 8 | 3impd | ⊢ ( 𝐴  =  𝐵  →  ( ( 𝑅  Po  𝑉  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  𝐴 𝑅 𝐵 )  →  𝐴  ≠  𝐵 ) ) | 
						
							| 10 |  | ax-1 | ⊢ ( 𝐴  ≠  𝐵  →  ( ( 𝑅  Po  𝑉  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  𝐴 𝑅 𝐵 )  →  𝐴  ≠  𝐵 ) ) | 
						
							| 11 | 9 10 | pm2.61ine | ⊢ ( ( 𝑅  Po  𝑉  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  𝐴 𝑅 𝐵 )  →  𝐴  ≠  𝐵 ) |