Step |
Hyp |
Ref |
Expression |
1 |
|
pockthi.p |
⊢ 𝑃 ∈ ℙ |
2 |
|
pockthi.g |
⊢ 𝐺 ∈ ℕ |
3 |
|
pockthi.m |
⊢ 𝑀 = ( 𝐺 · 𝑃 ) |
4 |
|
pockthi.n |
⊢ 𝑁 = ( 𝑀 + 1 ) |
5 |
|
pockthi.d |
⊢ 𝐷 ∈ ℕ |
6 |
|
pockthi.e |
⊢ 𝐸 ∈ ℕ |
7 |
|
pockthi.a |
⊢ 𝐴 ∈ ℕ |
8 |
|
pockthi.fac |
⊢ 𝑀 = ( 𝐷 · ( 𝑃 ↑ 𝐸 ) ) |
9 |
|
pockthi.gt |
⊢ 𝐷 < ( 𝑃 ↑ 𝐸 ) |
10 |
|
pockthi.mod |
⊢ ( ( 𝐴 ↑ 𝑀 ) mod 𝑁 ) = ( 1 mod 𝑁 ) |
11 |
|
pockthi.gcd |
⊢ ( ( ( 𝐴 ↑ 𝐺 ) − 1 ) gcd 𝑁 ) = 1 |
12 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
13 |
1 12
|
ax-mp |
⊢ 𝑃 ∈ ℕ |
14 |
6
|
nnnn0i |
⊢ 𝐸 ∈ ℕ0 |
15 |
|
nnexpcl |
⊢ ( ( 𝑃 ∈ ℕ ∧ 𝐸 ∈ ℕ0 ) → ( 𝑃 ↑ 𝐸 ) ∈ ℕ ) |
16 |
13 14 15
|
mp2an |
⊢ ( 𝑃 ↑ 𝐸 ) ∈ ℕ |
17 |
16
|
a1i |
⊢ ( 𝐷 ∈ ℕ → ( 𝑃 ↑ 𝐸 ) ∈ ℕ ) |
18 |
|
id |
⊢ ( 𝐷 ∈ ℕ → 𝐷 ∈ ℕ ) |
19 |
9
|
a1i |
⊢ ( 𝐷 ∈ ℕ → 𝐷 < ( 𝑃 ↑ 𝐸 ) ) |
20 |
5
|
nncni |
⊢ 𝐷 ∈ ℂ |
21 |
16
|
nncni |
⊢ ( 𝑃 ↑ 𝐸 ) ∈ ℂ |
22 |
20 21
|
mulcomi |
⊢ ( 𝐷 · ( 𝑃 ↑ 𝐸 ) ) = ( ( 𝑃 ↑ 𝐸 ) · 𝐷 ) |
23 |
8 22
|
eqtri |
⊢ 𝑀 = ( ( 𝑃 ↑ 𝐸 ) · 𝐷 ) |
24 |
23
|
oveq1i |
⊢ ( 𝑀 + 1 ) = ( ( ( 𝑃 ↑ 𝐸 ) · 𝐷 ) + 1 ) |
25 |
4 24
|
eqtri |
⊢ 𝑁 = ( ( ( 𝑃 ↑ 𝐸 ) · 𝐷 ) + 1 ) |
26 |
25
|
a1i |
⊢ ( 𝐷 ∈ ℕ → 𝑁 = ( ( ( 𝑃 ↑ 𝐸 ) · 𝐷 ) + 1 ) ) |
27 |
|
prmdvdsexpb |
⊢ ( ( 𝑥 ∈ ℙ ∧ 𝑃 ∈ ℙ ∧ 𝐸 ∈ ℕ ) → ( 𝑥 ∥ ( 𝑃 ↑ 𝐸 ) ↔ 𝑥 = 𝑃 ) ) |
28 |
1 6 27
|
mp3an23 |
⊢ ( 𝑥 ∈ ℙ → ( 𝑥 ∥ ( 𝑃 ↑ 𝐸 ) ↔ 𝑥 = 𝑃 ) ) |
29 |
2 13
|
nnmulcli |
⊢ ( 𝐺 · 𝑃 ) ∈ ℕ |
30 |
3 29
|
eqeltri |
⊢ 𝑀 ∈ ℕ |
31 |
30
|
nncni |
⊢ 𝑀 ∈ ℂ |
32 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
33 |
31 32 4
|
mvrraddi |
⊢ ( 𝑁 − 1 ) = 𝑀 |
34 |
33
|
oveq2i |
⊢ ( 𝐴 ↑ ( 𝑁 − 1 ) ) = ( 𝐴 ↑ 𝑀 ) |
35 |
34
|
oveq1i |
⊢ ( ( 𝐴 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) = ( ( 𝐴 ↑ 𝑀 ) mod 𝑁 ) |
36 |
|
peano2nn |
⊢ ( 𝑀 ∈ ℕ → ( 𝑀 + 1 ) ∈ ℕ ) |
37 |
30 36
|
ax-mp |
⊢ ( 𝑀 + 1 ) ∈ ℕ |
38 |
4 37
|
eqeltri |
⊢ 𝑁 ∈ ℕ |
39 |
38
|
nnrei |
⊢ 𝑁 ∈ ℝ |
40 |
30
|
nngt0i |
⊢ 0 < 𝑀 |
41 |
30
|
nnrei |
⊢ 𝑀 ∈ ℝ |
42 |
|
1re |
⊢ 1 ∈ ℝ |
43 |
|
ltaddpos2 |
⊢ ( ( 𝑀 ∈ ℝ ∧ 1 ∈ ℝ ) → ( 0 < 𝑀 ↔ 1 < ( 𝑀 + 1 ) ) ) |
44 |
41 42 43
|
mp2an |
⊢ ( 0 < 𝑀 ↔ 1 < ( 𝑀 + 1 ) ) |
45 |
40 44
|
mpbi |
⊢ 1 < ( 𝑀 + 1 ) |
46 |
45 4
|
breqtrri |
⊢ 1 < 𝑁 |
47 |
|
1mod |
⊢ ( ( 𝑁 ∈ ℝ ∧ 1 < 𝑁 ) → ( 1 mod 𝑁 ) = 1 ) |
48 |
39 46 47
|
mp2an |
⊢ ( 1 mod 𝑁 ) = 1 |
49 |
10 48
|
eqtri |
⊢ ( ( 𝐴 ↑ 𝑀 ) mod 𝑁 ) = 1 |
50 |
35 49
|
eqtri |
⊢ ( ( 𝐴 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) = 1 |
51 |
|
oveq2 |
⊢ ( 𝑥 = 𝑃 → ( ( 𝑁 − 1 ) / 𝑥 ) = ( ( 𝑁 − 1 ) / 𝑃 ) ) |
52 |
2
|
nncni |
⊢ 𝐺 ∈ ℂ |
53 |
13
|
nncni |
⊢ 𝑃 ∈ ℂ |
54 |
52 53
|
mulcomi |
⊢ ( 𝐺 · 𝑃 ) = ( 𝑃 · 𝐺 ) |
55 |
33 3 54
|
3eqtrri |
⊢ ( 𝑃 · 𝐺 ) = ( 𝑁 − 1 ) |
56 |
38
|
nncni |
⊢ 𝑁 ∈ ℂ |
57 |
56 32
|
subcli |
⊢ ( 𝑁 − 1 ) ∈ ℂ |
58 |
13
|
nnne0i |
⊢ 𝑃 ≠ 0 |
59 |
57 53 52 58
|
divmuli |
⊢ ( ( ( 𝑁 − 1 ) / 𝑃 ) = 𝐺 ↔ ( 𝑃 · 𝐺 ) = ( 𝑁 − 1 ) ) |
60 |
55 59
|
mpbir |
⊢ ( ( 𝑁 − 1 ) / 𝑃 ) = 𝐺 |
61 |
51 60
|
eqtrdi |
⊢ ( 𝑥 = 𝑃 → ( ( 𝑁 − 1 ) / 𝑥 ) = 𝐺 ) |
62 |
61
|
oveq2d |
⊢ ( 𝑥 = 𝑃 → ( 𝐴 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) = ( 𝐴 ↑ 𝐺 ) ) |
63 |
62
|
oveq1d |
⊢ ( 𝑥 = 𝑃 → ( ( 𝐴 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) − 1 ) = ( ( 𝐴 ↑ 𝐺 ) − 1 ) ) |
64 |
63
|
oveq1d |
⊢ ( 𝑥 = 𝑃 → ( ( ( 𝐴 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) − 1 ) gcd 𝑁 ) = ( ( ( 𝐴 ↑ 𝐺 ) − 1 ) gcd 𝑁 ) ) |
65 |
64 11
|
eqtrdi |
⊢ ( 𝑥 = 𝑃 → ( ( ( 𝐴 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) − 1 ) gcd 𝑁 ) = 1 ) |
66 |
7
|
nnzi |
⊢ 𝐴 ∈ ℤ |
67 |
|
oveq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 ↑ ( 𝑁 − 1 ) ) = ( 𝐴 ↑ ( 𝑁 − 1 ) ) ) |
68 |
67
|
oveq1d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝑦 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) = ( ( 𝐴 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) ) |
69 |
68
|
eqeq1d |
⊢ ( 𝑦 = 𝐴 → ( ( ( 𝑦 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) = 1 ↔ ( ( 𝐴 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) = 1 ) ) |
70 |
|
oveq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) = ( 𝐴 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) ) |
71 |
70
|
oveq1d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝑦 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) − 1 ) = ( ( 𝐴 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) − 1 ) ) |
72 |
71
|
oveq1d |
⊢ ( 𝑦 = 𝐴 → ( ( ( 𝑦 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) − 1 ) gcd 𝑁 ) = ( ( ( 𝐴 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) − 1 ) gcd 𝑁 ) ) |
73 |
72
|
eqeq1d |
⊢ ( 𝑦 = 𝐴 → ( ( ( ( 𝑦 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) − 1 ) gcd 𝑁 ) = 1 ↔ ( ( ( 𝐴 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) − 1 ) gcd 𝑁 ) = 1 ) ) |
74 |
69 73
|
anbi12d |
⊢ ( 𝑦 = 𝐴 → ( ( ( ( 𝑦 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) = 1 ∧ ( ( ( 𝑦 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) − 1 ) gcd 𝑁 ) = 1 ) ↔ ( ( ( 𝐴 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) = 1 ∧ ( ( ( 𝐴 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) − 1 ) gcd 𝑁 ) = 1 ) ) ) |
75 |
74
|
rspcev |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( ( ( 𝐴 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) = 1 ∧ ( ( ( 𝐴 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) − 1 ) gcd 𝑁 ) = 1 ) ) → ∃ 𝑦 ∈ ℤ ( ( ( 𝑦 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) = 1 ∧ ( ( ( 𝑦 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) − 1 ) gcd 𝑁 ) = 1 ) ) |
76 |
66 75
|
mpan |
⊢ ( ( ( ( 𝐴 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) = 1 ∧ ( ( ( 𝐴 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) − 1 ) gcd 𝑁 ) = 1 ) → ∃ 𝑦 ∈ ℤ ( ( ( 𝑦 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) = 1 ∧ ( ( ( 𝑦 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) − 1 ) gcd 𝑁 ) = 1 ) ) |
77 |
50 65 76
|
sylancr |
⊢ ( 𝑥 = 𝑃 → ∃ 𝑦 ∈ ℤ ( ( ( 𝑦 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) = 1 ∧ ( ( ( 𝑦 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) − 1 ) gcd 𝑁 ) = 1 ) ) |
78 |
28 77
|
syl6bi |
⊢ ( 𝑥 ∈ ℙ → ( 𝑥 ∥ ( 𝑃 ↑ 𝐸 ) → ∃ 𝑦 ∈ ℤ ( ( ( 𝑦 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) = 1 ∧ ( ( ( 𝑦 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) − 1 ) gcd 𝑁 ) = 1 ) ) ) |
79 |
78
|
rgen |
⊢ ∀ 𝑥 ∈ ℙ ( 𝑥 ∥ ( 𝑃 ↑ 𝐸 ) → ∃ 𝑦 ∈ ℤ ( ( ( 𝑦 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) = 1 ∧ ( ( ( 𝑦 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) − 1 ) gcd 𝑁 ) = 1 ) ) |
80 |
79
|
a1i |
⊢ ( 𝐷 ∈ ℕ → ∀ 𝑥 ∈ ℙ ( 𝑥 ∥ ( 𝑃 ↑ 𝐸 ) → ∃ 𝑦 ∈ ℤ ( ( ( 𝑦 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) = 1 ∧ ( ( ( 𝑦 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) − 1 ) gcd 𝑁 ) = 1 ) ) ) |
81 |
17 18 19 26 80
|
pockthg |
⊢ ( 𝐷 ∈ ℕ → 𝑁 ∈ ℙ ) |
82 |
5 81
|
ax-mp |
⊢ 𝑁 ∈ ℙ |