| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pockthi.p |
⊢ 𝑃 ∈ ℙ |
| 2 |
|
pockthi.g |
⊢ 𝐺 ∈ ℕ |
| 3 |
|
pockthi.m |
⊢ 𝑀 = ( 𝐺 · 𝑃 ) |
| 4 |
|
pockthi.n |
⊢ 𝑁 = ( 𝑀 + 1 ) |
| 5 |
|
pockthi.d |
⊢ 𝐷 ∈ ℕ |
| 6 |
|
pockthi.e |
⊢ 𝐸 ∈ ℕ |
| 7 |
|
pockthi.a |
⊢ 𝐴 ∈ ℕ |
| 8 |
|
pockthi.fac |
⊢ 𝑀 = ( 𝐷 · ( 𝑃 ↑ 𝐸 ) ) |
| 9 |
|
pockthi.gt |
⊢ 𝐷 < ( 𝑃 ↑ 𝐸 ) |
| 10 |
|
pockthi.mod |
⊢ ( ( 𝐴 ↑ 𝑀 ) mod 𝑁 ) = ( 1 mod 𝑁 ) |
| 11 |
|
pockthi.gcd |
⊢ ( ( ( 𝐴 ↑ 𝐺 ) − 1 ) gcd 𝑁 ) = 1 |
| 12 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
| 13 |
1 12
|
ax-mp |
⊢ 𝑃 ∈ ℕ |
| 14 |
6
|
nnnn0i |
⊢ 𝐸 ∈ ℕ0 |
| 15 |
|
nnexpcl |
⊢ ( ( 𝑃 ∈ ℕ ∧ 𝐸 ∈ ℕ0 ) → ( 𝑃 ↑ 𝐸 ) ∈ ℕ ) |
| 16 |
13 14 15
|
mp2an |
⊢ ( 𝑃 ↑ 𝐸 ) ∈ ℕ |
| 17 |
16
|
a1i |
⊢ ( 𝐷 ∈ ℕ → ( 𝑃 ↑ 𝐸 ) ∈ ℕ ) |
| 18 |
|
id |
⊢ ( 𝐷 ∈ ℕ → 𝐷 ∈ ℕ ) |
| 19 |
9
|
a1i |
⊢ ( 𝐷 ∈ ℕ → 𝐷 < ( 𝑃 ↑ 𝐸 ) ) |
| 20 |
5
|
nncni |
⊢ 𝐷 ∈ ℂ |
| 21 |
16
|
nncni |
⊢ ( 𝑃 ↑ 𝐸 ) ∈ ℂ |
| 22 |
20 21
|
mulcomi |
⊢ ( 𝐷 · ( 𝑃 ↑ 𝐸 ) ) = ( ( 𝑃 ↑ 𝐸 ) · 𝐷 ) |
| 23 |
8 22
|
eqtri |
⊢ 𝑀 = ( ( 𝑃 ↑ 𝐸 ) · 𝐷 ) |
| 24 |
23
|
oveq1i |
⊢ ( 𝑀 + 1 ) = ( ( ( 𝑃 ↑ 𝐸 ) · 𝐷 ) + 1 ) |
| 25 |
4 24
|
eqtri |
⊢ 𝑁 = ( ( ( 𝑃 ↑ 𝐸 ) · 𝐷 ) + 1 ) |
| 26 |
25
|
a1i |
⊢ ( 𝐷 ∈ ℕ → 𝑁 = ( ( ( 𝑃 ↑ 𝐸 ) · 𝐷 ) + 1 ) ) |
| 27 |
|
prmdvdsexpb |
⊢ ( ( 𝑥 ∈ ℙ ∧ 𝑃 ∈ ℙ ∧ 𝐸 ∈ ℕ ) → ( 𝑥 ∥ ( 𝑃 ↑ 𝐸 ) ↔ 𝑥 = 𝑃 ) ) |
| 28 |
1 6 27
|
mp3an23 |
⊢ ( 𝑥 ∈ ℙ → ( 𝑥 ∥ ( 𝑃 ↑ 𝐸 ) ↔ 𝑥 = 𝑃 ) ) |
| 29 |
2 13
|
nnmulcli |
⊢ ( 𝐺 · 𝑃 ) ∈ ℕ |
| 30 |
3 29
|
eqeltri |
⊢ 𝑀 ∈ ℕ |
| 31 |
30
|
nncni |
⊢ 𝑀 ∈ ℂ |
| 32 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 33 |
31 32 4
|
mvrraddi |
⊢ ( 𝑁 − 1 ) = 𝑀 |
| 34 |
33
|
oveq2i |
⊢ ( 𝐴 ↑ ( 𝑁 − 1 ) ) = ( 𝐴 ↑ 𝑀 ) |
| 35 |
34
|
oveq1i |
⊢ ( ( 𝐴 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) = ( ( 𝐴 ↑ 𝑀 ) mod 𝑁 ) |
| 36 |
|
peano2nn |
⊢ ( 𝑀 ∈ ℕ → ( 𝑀 + 1 ) ∈ ℕ ) |
| 37 |
30 36
|
ax-mp |
⊢ ( 𝑀 + 1 ) ∈ ℕ |
| 38 |
4 37
|
eqeltri |
⊢ 𝑁 ∈ ℕ |
| 39 |
38
|
nnrei |
⊢ 𝑁 ∈ ℝ |
| 40 |
30
|
nngt0i |
⊢ 0 < 𝑀 |
| 41 |
30
|
nnrei |
⊢ 𝑀 ∈ ℝ |
| 42 |
|
1re |
⊢ 1 ∈ ℝ |
| 43 |
|
ltaddpos2 |
⊢ ( ( 𝑀 ∈ ℝ ∧ 1 ∈ ℝ ) → ( 0 < 𝑀 ↔ 1 < ( 𝑀 + 1 ) ) ) |
| 44 |
41 42 43
|
mp2an |
⊢ ( 0 < 𝑀 ↔ 1 < ( 𝑀 + 1 ) ) |
| 45 |
40 44
|
mpbi |
⊢ 1 < ( 𝑀 + 1 ) |
| 46 |
45 4
|
breqtrri |
⊢ 1 < 𝑁 |
| 47 |
|
1mod |
⊢ ( ( 𝑁 ∈ ℝ ∧ 1 < 𝑁 ) → ( 1 mod 𝑁 ) = 1 ) |
| 48 |
39 46 47
|
mp2an |
⊢ ( 1 mod 𝑁 ) = 1 |
| 49 |
10 48
|
eqtri |
⊢ ( ( 𝐴 ↑ 𝑀 ) mod 𝑁 ) = 1 |
| 50 |
35 49
|
eqtri |
⊢ ( ( 𝐴 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) = 1 |
| 51 |
|
oveq2 |
⊢ ( 𝑥 = 𝑃 → ( ( 𝑁 − 1 ) / 𝑥 ) = ( ( 𝑁 − 1 ) / 𝑃 ) ) |
| 52 |
2
|
nncni |
⊢ 𝐺 ∈ ℂ |
| 53 |
13
|
nncni |
⊢ 𝑃 ∈ ℂ |
| 54 |
52 53
|
mulcomi |
⊢ ( 𝐺 · 𝑃 ) = ( 𝑃 · 𝐺 ) |
| 55 |
33 3 54
|
3eqtrri |
⊢ ( 𝑃 · 𝐺 ) = ( 𝑁 − 1 ) |
| 56 |
38
|
nncni |
⊢ 𝑁 ∈ ℂ |
| 57 |
56 32
|
subcli |
⊢ ( 𝑁 − 1 ) ∈ ℂ |
| 58 |
13
|
nnne0i |
⊢ 𝑃 ≠ 0 |
| 59 |
57 53 52 58
|
divmuli |
⊢ ( ( ( 𝑁 − 1 ) / 𝑃 ) = 𝐺 ↔ ( 𝑃 · 𝐺 ) = ( 𝑁 − 1 ) ) |
| 60 |
55 59
|
mpbir |
⊢ ( ( 𝑁 − 1 ) / 𝑃 ) = 𝐺 |
| 61 |
51 60
|
eqtrdi |
⊢ ( 𝑥 = 𝑃 → ( ( 𝑁 − 1 ) / 𝑥 ) = 𝐺 ) |
| 62 |
61
|
oveq2d |
⊢ ( 𝑥 = 𝑃 → ( 𝐴 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) = ( 𝐴 ↑ 𝐺 ) ) |
| 63 |
62
|
oveq1d |
⊢ ( 𝑥 = 𝑃 → ( ( 𝐴 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) − 1 ) = ( ( 𝐴 ↑ 𝐺 ) − 1 ) ) |
| 64 |
63
|
oveq1d |
⊢ ( 𝑥 = 𝑃 → ( ( ( 𝐴 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) − 1 ) gcd 𝑁 ) = ( ( ( 𝐴 ↑ 𝐺 ) − 1 ) gcd 𝑁 ) ) |
| 65 |
64 11
|
eqtrdi |
⊢ ( 𝑥 = 𝑃 → ( ( ( 𝐴 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) − 1 ) gcd 𝑁 ) = 1 ) |
| 66 |
7
|
nnzi |
⊢ 𝐴 ∈ ℤ |
| 67 |
|
oveq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 ↑ ( 𝑁 − 1 ) ) = ( 𝐴 ↑ ( 𝑁 − 1 ) ) ) |
| 68 |
67
|
oveq1d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝑦 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) = ( ( 𝐴 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) ) |
| 69 |
68
|
eqeq1d |
⊢ ( 𝑦 = 𝐴 → ( ( ( 𝑦 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) = 1 ↔ ( ( 𝐴 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) = 1 ) ) |
| 70 |
|
oveq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) = ( 𝐴 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) ) |
| 71 |
70
|
oveq1d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝑦 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) − 1 ) = ( ( 𝐴 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) − 1 ) ) |
| 72 |
71
|
oveq1d |
⊢ ( 𝑦 = 𝐴 → ( ( ( 𝑦 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) − 1 ) gcd 𝑁 ) = ( ( ( 𝐴 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) − 1 ) gcd 𝑁 ) ) |
| 73 |
72
|
eqeq1d |
⊢ ( 𝑦 = 𝐴 → ( ( ( ( 𝑦 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) − 1 ) gcd 𝑁 ) = 1 ↔ ( ( ( 𝐴 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) − 1 ) gcd 𝑁 ) = 1 ) ) |
| 74 |
69 73
|
anbi12d |
⊢ ( 𝑦 = 𝐴 → ( ( ( ( 𝑦 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) = 1 ∧ ( ( ( 𝑦 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) − 1 ) gcd 𝑁 ) = 1 ) ↔ ( ( ( 𝐴 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) = 1 ∧ ( ( ( 𝐴 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) − 1 ) gcd 𝑁 ) = 1 ) ) ) |
| 75 |
74
|
rspcev |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( ( ( 𝐴 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) = 1 ∧ ( ( ( 𝐴 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) − 1 ) gcd 𝑁 ) = 1 ) ) → ∃ 𝑦 ∈ ℤ ( ( ( 𝑦 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) = 1 ∧ ( ( ( 𝑦 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) − 1 ) gcd 𝑁 ) = 1 ) ) |
| 76 |
66 75
|
mpan |
⊢ ( ( ( ( 𝐴 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) = 1 ∧ ( ( ( 𝐴 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) − 1 ) gcd 𝑁 ) = 1 ) → ∃ 𝑦 ∈ ℤ ( ( ( 𝑦 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) = 1 ∧ ( ( ( 𝑦 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) − 1 ) gcd 𝑁 ) = 1 ) ) |
| 77 |
50 65 76
|
sylancr |
⊢ ( 𝑥 = 𝑃 → ∃ 𝑦 ∈ ℤ ( ( ( 𝑦 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) = 1 ∧ ( ( ( 𝑦 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) − 1 ) gcd 𝑁 ) = 1 ) ) |
| 78 |
28 77
|
biimtrdi |
⊢ ( 𝑥 ∈ ℙ → ( 𝑥 ∥ ( 𝑃 ↑ 𝐸 ) → ∃ 𝑦 ∈ ℤ ( ( ( 𝑦 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) = 1 ∧ ( ( ( 𝑦 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) − 1 ) gcd 𝑁 ) = 1 ) ) ) |
| 79 |
78
|
rgen |
⊢ ∀ 𝑥 ∈ ℙ ( 𝑥 ∥ ( 𝑃 ↑ 𝐸 ) → ∃ 𝑦 ∈ ℤ ( ( ( 𝑦 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) = 1 ∧ ( ( ( 𝑦 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) − 1 ) gcd 𝑁 ) = 1 ) ) |
| 80 |
79
|
a1i |
⊢ ( 𝐷 ∈ ℕ → ∀ 𝑥 ∈ ℙ ( 𝑥 ∥ ( 𝑃 ↑ 𝐸 ) → ∃ 𝑦 ∈ ℤ ( ( ( 𝑦 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) = 1 ∧ ( ( ( 𝑦 ↑ ( ( 𝑁 − 1 ) / 𝑥 ) ) − 1 ) gcd 𝑁 ) = 1 ) ) ) |
| 81 |
17 18 19 26 80
|
pockthg |
⊢ ( 𝐷 ∈ ℕ → 𝑁 ∈ ℙ ) |
| 82 |
5 81
|
ax-mp |
⊢ 𝑁 ∈ ℙ |