| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pockthg.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℕ ) | 
						
							| 2 |  | pockthg.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℕ ) | 
						
							| 3 |  | pockthg.3 | ⊢ ( 𝜑  →  𝐵  <  𝐴 ) | 
						
							| 4 |  | pockthg.4 | ⊢ ( 𝜑  →  𝑁  =  ( ( 𝐴  ·  𝐵 )  +  1 ) ) | 
						
							| 5 |  | pockthlem.5 | ⊢ ( 𝜑  →  𝑃  ∈  ℙ ) | 
						
							| 6 |  | pockthlem.6 | ⊢ ( 𝜑  →  𝑃  ∥  𝑁 ) | 
						
							| 7 |  | pockthlem.7 | ⊢ ( 𝜑  →  𝑄  ∈  ℙ ) | 
						
							| 8 |  | pockthlem.8 | ⊢ ( 𝜑  →  ( 𝑄  pCnt  𝐴 )  ∈  ℕ ) | 
						
							| 9 |  | pockthlem.9 | ⊢ ( 𝜑  →  𝐶  ∈  ℤ ) | 
						
							| 10 |  | pockthlem.10 | ⊢ ( 𝜑  →  ( ( 𝐶 ↑ ( 𝑁  −  1 ) )  mod  𝑁 )  =  1 ) | 
						
							| 11 |  | pockthlem.11 | ⊢ ( 𝜑  →  ( ( ( 𝐶 ↑ ( ( 𝑁  −  1 )  /  𝑄 ) )  −  1 )  gcd  𝑁 )  =  1 ) | 
						
							| 12 |  | prmnn | ⊢ ( 𝑄  ∈  ℙ  →  𝑄  ∈  ℕ ) | 
						
							| 13 | 7 12 | syl | ⊢ ( 𝜑  →  𝑄  ∈  ℕ ) | 
						
							| 14 | 8 | nnnn0d | ⊢ ( 𝜑  →  ( 𝑄  pCnt  𝐴 )  ∈  ℕ0 ) | 
						
							| 15 | 13 14 | nnexpcld | ⊢ ( 𝜑  →  ( 𝑄 ↑ ( 𝑄  pCnt  𝐴 ) )  ∈  ℕ ) | 
						
							| 16 | 15 | nnzd | ⊢ ( 𝜑  →  ( 𝑄 ↑ ( 𝑄  pCnt  𝐴 ) )  ∈  ℤ ) | 
						
							| 17 |  | prmnn | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℕ ) | 
						
							| 18 | 5 17 | syl | ⊢ ( 𝜑  →  𝑃  ∈  ℕ ) | 
						
							| 19 | 18 | nnzd | ⊢ ( 𝜑  →  𝑃  ∈  ℤ ) | 
						
							| 20 |  | gcddvds | ⊢ ( ( 𝐶  ∈  ℤ  ∧  𝑃  ∈  ℤ )  →  ( ( 𝐶  gcd  𝑃 )  ∥  𝐶  ∧  ( 𝐶  gcd  𝑃 )  ∥  𝑃 ) ) | 
						
							| 21 | 9 19 20 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐶  gcd  𝑃 )  ∥  𝐶  ∧  ( 𝐶  gcd  𝑃 )  ∥  𝑃 ) ) | 
						
							| 22 | 21 | simpld | ⊢ ( 𝜑  →  ( 𝐶  gcd  𝑃 )  ∥  𝐶 ) | 
						
							| 23 | 9 19 | gcdcld | ⊢ ( 𝜑  →  ( 𝐶  gcd  𝑃 )  ∈  ℕ0 ) | 
						
							| 24 | 23 | nn0zd | ⊢ ( 𝜑  →  ( 𝐶  gcd  𝑃 )  ∈  ℤ ) | 
						
							| 25 | 1 2 | nnmulcld | ⊢ ( 𝜑  →  ( 𝐴  ·  𝐵 )  ∈  ℕ ) | 
						
							| 26 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 27 | 25 26 | eleqtrdi | ⊢ ( 𝜑  →  ( 𝐴  ·  𝐵 )  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 28 |  | eluzp1p1 | ⊢ ( ( 𝐴  ·  𝐵 )  ∈  ( ℤ≥ ‘ 1 )  →  ( ( 𝐴  ·  𝐵 )  +  1 )  ∈  ( ℤ≥ ‘ ( 1  +  1 ) ) ) | 
						
							| 29 | 27 28 | syl | ⊢ ( 𝜑  →  ( ( 𝐴  ·  𝐵 )  +  1 )  ∈  ( ℤ≥ ‘ ( 1  +  1 ) ) ) | 
						
							| 30 | 4 29 | eqeltrd | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ ( 1  +  1 ) ) ) | 
						
							| 31 |  | df-2 | ⊢ 2  =  ( 1  +  1 ) | 
						
							| 32 | 31 | fveq2i | ⊢ ( ℤ≥ ‘ 2 )  =  ( ℤ≥ ‘ ( 1  +  1 ) ) | 
						
							| 33 | 30 32 | eleqtrrdi | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 34 |  | eluz2b2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ↔  ( 𝑁  ∈  ℕ  ∧  1  <  𝑁 ) ) | 
						
							| 35 | 33 34 | sylib | ⊢ ( 𝜑  →  ( 𝑁  ∈  ℕ  ∧  1  <  𝑁 ) ) | 
						
							| 36 | 35 | simpld | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 37 | 36 | nnzd | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 38 | 21 | simprd | ⊢ ( 𝜑  →  ( 𝐶  gcd  𝑃 )  ∥  𝑃 ) | 
						
							| 39 | 24 19 37 38 6 | dvdstrd | ⊢ ( 𝜑  →  ( 𝐶  gcd  𝑃 )  ∥  𝑁 ) | 
						
							| 40 | 36 | nnne0d | ⊢ ( 𝜑  →  𝑁  ≠  0 ) | 
						
							| 41 |  | simpr | ⊢ ( ( 𝐶  =  0  ∧  𝑁  =  0 )  →  𝑁  =  0 ) | 
						
							| 42 | 41 | necon3ai | ⊢ ( 𝑁  ≠  0  →  ¬  ( 𝐶  =  0  ∧  𝑁  =  0 ) ) | 
						
							| 43 | 40 42 | syl | ⊢ ( 𝜑  →  ¬  ( 𝐶  =  0  ∧  𝑁  =  0 ) ) | 
						
							| 44 |  | dvdslegcd | ⊢ ( ( ( ( 𝐶  gcd  𝑃 )  ∈  ℤ  ∧  𝐶  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  ( 𝐶  =  0  ∧  𝑁  =  0 ) )  →  ( ( ( 𝐶  gcd  𝑃 )  ∥  𝐶  ∧  ( 𝐶  gcd  𝑃 )  ∥  𝑁 )  →  ( 𝐶  gcd  𝑃 )  ≤  ( 𝐶  gcd  𝑁 ) ) ) | 
						
							| 45 | 24 9 37 43 44 | syl31anc | ⊢ ( 𝜑  →  ( ( ( 𝐶  gcd  𝑃 )  ∥  𝐶  ∧  ( 𝐶  gcd  𝑃 )  ∥  𝑁 )  →  ( 𝐶  gcd  𝑃 )  ≤  ( 𝐶  gcd  𝑁 ) ) ) | 
						
							| 46 | 22 39 45 | mp2and | ⊢ ( 𝜑  →  ( 𝐶  gcd  𝑃 )  ≤  ( 𝐶  gcd  𝑁 ) ) | 
						
							| 47 | 10 | oveq1d | ⊢ ( 𝜑  →  ( ( ( 𝐶 ↑ ( 𝑁  −  1 ) )  mod  𝑁 )  gcd  𝑁 )  =  ( 1  gcd  𝑁 ) ) | 
						
							| 48 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 49 |  | eluzp1m1 | ⊢ ( ( 1  ∈  ℤ  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 1  +  1 ) ) )  →  ( 𝑁  −  1 )  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 50 | 48 30 49 | sylancr | ⊢ ( 𝜑  →  ( 𝑁  −  1 )  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 51 | 50 26 | eleqtrrdi | ⊢ ( 𝜑  →  ( 𝑁  −  1 )  ∈  ℕ ) | 
						
							| 52 | 51 | nnnn0d | ⊢ ( 𝜑  →  ( 𝑁  −  1 )  ∈  ℕ0 ) | 
						
							| 53 |  | zexpcl | ⊢ ( ( 𝐶  ∈  ℤ  ∧  ( 𝑁  −  1 )  ∈  ℕ0 )  →  ( 𝐶 ↑ ( 𝑁  −  1 ) )  ∈  ℤ ) | 
						
							| 54 | 9 52 53 | syl2anc | ⊢ ( 𝜑  →  ( 𝐶 ↑ ( 𝑁  −  1 ) )  ∈  ℤ ) | 
						
							| 55 |  | modgcd | ⊢ ( ( ( 𝐶 ↑ ( 𝑁  −  1 ) )  ∈  ℤ  ∧  𝑁  ∈  ℕ )  →  ( ( ( 𝐶 ↑ ( 𝑁  −  1 ) )  mod  𝑁 )  gcd  𝑁 )  =  ( ( 𝐶 ↑ ( 𝑁  −  1 ) )  gcd  𝑁 ) ) | 
						
							| 56 | 54 36 55 | syl2anc | ⊢ ( 𝜑  →  ( ( ( 𝐶 ↑ ( 𝑁  −  1 ) )  mod  𝑁 )  gcd  𝑁 )  =  ( ( 𝐶 ↑ ( 𝑁  −  1 ) )  gcd  𝑁 ) ) | 
						
							| 57 |  | gcdcom | ⊢ ( ( 1  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 1  gcd  𝑁 )  =  ( 𝑁  gcd  1 ) ) | 
						
							| 58 | 48 37 57 | sylancr | ⊢ ( 𝜑  →  ( 1  gcd  𝑁 )  =  ( 𝑁  gcd  1 ) ) | 
						
							| 59 |  | gcd1 | ⊢ ( 𝑁  ∈  ℤ  →  ( 𝑁  gcd  1 )  =  1 ) | 
						
							| 60 | 37 59 | syl | ⊢ ( 𝜑  →  ( 𝑁  gcd  1 )  =  1 ) | 
						
							| 61 | 58 60 | eqtrd | ⊢ ( 𝜑  →  ( 1  gcd  𝑁 )  =  1 ) | 
						
							| 62 | 47 56 61 | 3eqtr3d | ⊢ ( 𝜑  →  ( ( 𝐶 ↑ ( 𝑁  −  1 ) )  gcd  𝑁 )  =  1 ) | 
						
							| 63 |  | rpexp | ⊢ ( ( 𝐶  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  ( 𝑁  −  1 )  ∈  ℕ )  →  ( ( ( 𝐶 ↑ ( 𝑁  −  1 ) )  gcd  𝑁 )  =  1  ↔  ( 𝐶  gcd  𝑁 )  =  1 ) ) | 
						
							| 64 | 9 37 51 63 | syl3anc | ⊢ ( 𝜑  →  ( ( ( 𝐶 ↑ ( 𝑁  −  1 ) )  gcd  𝑁 )  =  1  ↔  ( 𝐶  gcd  𝑁 )  =  1 ) ) | 
						
							| 65 | 62 64 | mpbid | ⊢ ( 𝜑  →  ( 𝐶  gcd  𝑁 )  =  1 ) | 
						
							| 66 | 46 65 | breqtrd | ⊢ ( 𝜑  →  ( 𝐶  gcd  𝑃 )  ≤  1 ) | 
						
							| 67 | 18 | nnne0d | ⊢ ( 𝜑  →  𝑃  ≠  0 ) | 
						
							| 68 |  | simpr | ⊢ ( ( 𝐶  =  0  ∧  𝑃  =  0 )  →  𝑃  =  0 ) | 
						
							| 69 | 68 | necon3ai | ⊢ ( 𝑃  ≠  0  →  ¬  ( 𝐶  =  0  ∧  𝑃  =  0 ) ) | 
						
							| 70 | 67 69 | syl | ⊢ ( 𝜑  →  ¬  ( 𝐶  =  0  ∧  𝑃  =  0 ) ) | 
						
							| 71 |  | gcdn0cl | ⊢ ( ( ( 𝐶  ∈  ℤ  ∧  𝑃  ∈  ℤ )  ∧  ¬  ( 𝐶  =  0  ∧  𝑃  =  0 ) )  →  ( 𝐶  gcd  𝑃 )  ∈  ℕ ) | 
						
							| 72 | 9 19 70 71 | syl21anc | ⊢ ( 𝜑  →  ( 𝐶  gcd  𝑃 )  ∈  ℕ ) | 
						
							| 73 |  | nnle1eq1 | ⊢ ( ( 𝐶  gcd  𝑃 )  ∈  ℕ  →  ( ( 𝐶  gcd  𝑃 )  ≤  1  ↔  ( 𝐶  gcd  𝑃 )  =  1 ) ) | 
						
							| 74 | 72 73 | syl | ⊢ ( 𝜑  →  ( ( 𝐶  gcd  𝑃 )  ≤  1  ↔  ( 𝐶  gcd  𝑃 )  =  1 ) ) | 
						
							| 75 | 66 74 | mpbid | ⊢ ( 𝜑  →  ( 𝐶  gcd  𝑃 )  =  1 ) | 
						
							| 76 |  | odzcl | ⊢ ( ( 𝑃  ∈  ℕ  ∧  𝐶  ∈  ℤ  ∧  ( 𝐶  gcd  𝑃 )  =  1 )  →  ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 )  ∈  ℕ ) | 
						
							| 77 | 18 9 75 76 | syl3anc | ⊢ ( 𝜑  →  ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 )  ∈  ℕ ) | 
						
							| 78 | 77 | nnzd | ⊢ ( 𝜑  →  ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 )  ∈  ℤ ) | 
						
							| 79 |  | prmuz2 | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 80 | 5 79 | syl | ⊢ ( 𝜑  →  𝑃  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 81 | 80 32 | eleqtrdi | ⊢ ( 𝜑  →  𝑃  ∈  ( ℤ≥ ‘ ( 1  +  1 ) ) ) | 
						
							| 82 |  | eluzp1m1 | ⊢ ( ( 1  ∈  ℤ  ∧  𝑃  ∈  ( ℤ≥ ‘ ( 1  +  1 ) ) )  →  ( 𝑃  −  1 )  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 83 | 48 81 82 | sylancr | ⊢ ( 𝜑  →  ( 𝑃  −  1 )  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 84 | 83 26 | eleqtrrdi | ⊢ ( 𝜑  →  ( 𝑃  −  1 )  ∈  ℕ ) | 
						
							| 85 | 84 | nnzd | ⊢ ( 𝜑  →  ( 𝑃  −  1 )  ∈  ℤ ) | 
						
							| 86 | 1 | nnzd | ⊢ ( 𝜑  →  𝐴  ∈  ℤ ) | 
						
							| 87 | 51 | nnzd | ⊢ ( 𝜑  →  ( 𝑁  −  1 )  ∈  ℤ ) | 
						
							| 88 |  | pcdvds | ⊢ ( ( 𝑄  ∈  ℙ  ∧  𝐴  ∈  ℕ )  →  ( 𝑄 ↑ ( 𝑄  pCnt  𝐴 ) )  ∥  𝐴 ) | 
						
							| 89 | 7 1 88 | syl2anc | ⊢ ( 𝜑  →  ( 𝑄 ↑ ( 𝑄  pCnt  𝐴 ) )  ∥  𝐴 ) | 
						
							| 90 | 2 | nnzd | ⊢ ( 𝜑  →  𝐵  ∈  ℤ ) | 
						
							| 91 |  | dvdsmul1 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  𝐴  ∥  ( 𝐴  ·  𝐵 ) ) | 
						
							| 92 | 86 90 91 | syl2anc | ⊢ ( 𝜑  →  𝐴  ∥  ( 𝐴  ·  𝐵 ) ) | 
						
							| 93 | 4 | oveq1d | ⊢ ( 𝜑  →  ( 𝑁  −  1 )  =  ( ( ( 𝐴  ·  𝐵 )  +  1 )  −  1 ) ) | 
						
							| 94 | 25 | nncnd | ⊢ ( 𝜑  →  ( 𝐴  ·  𝐵 )  ∈  ℂ ) | 
						
							| 95 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 96 |  | pncan | ⊢ ( ( ( 𝐴  ·  𝐵 )  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( ( 𝐴  ·  𝐵 )  +  1 )  −  1 )  =  ( 𝐴  ·  𝐵 ) ) | 
						
							| 97 | 94 95 96 | sylancl | ⊢ ( 𝜑  →  ( ( ( 𝐴  ·  𝐵 )  +  1 )  −  1 )  =  ( 𝐴  ·  𝐵 ) ) | 
						
							| 98 | 93 97 | eqtrd | ⊢ ( 𝜑  →  ( 𝑁  −  1 )  =  ( 𝐴  ·  𝐵 ) ) | 
						
							| 99 | 92 98 | breqtrrd | ⊢ ( 𝜑  →  𝐴  ∥  ( 𝑁  −  1 ) ) | 
						
							| 100 | 16 86 87 89 99 | dvdstrd | ⊢ ( 𝜑  →  ( 𝑄 ↑ ( 𝑄  pCnt  𝐴 ) )  ∥  ( 𝑁  −  1 ) ) | 
						
							| 101 | 15 | nnne0d | ⊢ ( 𝜑  →  ( 𝑄 ↑ ( 𝑄  pCnt  𝐴 ) )  ≠  0 ) | 
						
							| 102 |  | dvdsval2 | ⊢ ( ( ( 𝑄 ↑ ( 𝑄  pCnt  𝐴 ) )  ∈  ℤ  ∧  ( 𝑄 ↑ ( 𝑄  pCnt  𝐴 ) )  ≠  0  ∧  ( 𝑁  −  1 )  ∈  ℤ )  →  ( ( 𝑄 ↑ ( 𝑄  pCnt  𝐴 ) )  ∥  ( 𝑁  −  1 )  ↔  ( ( 𝑁  −  1 )  /  ( 𝑄 ↑ ( 𝑄  pCnt  𝐴 ) ) )  ∈  ℤ ) ) | 
						
							| 103 | 16 101 87 102 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝑄 ↑ ( 𝑄  pCnt  𝐴 ) )  ∥  ( 𝑁  −  1 )  ↔  ( ( 𝑁  −  1 )  /  ( 𝑄 ↑ ( 𝑄  pCnt  𝐴 ) ) )  ∈  ℤ ) ) | 
						
							| 104 | 100 103 | mpbid | ⊢ ( 𝜑  →  ( ( 𝑁  −  1 )  /  ( 𝑄 ↑ ( 𝑄  pCnt  𝐴 ) ) )  ∈  ℤ ) | 
						
							| 105 |  | peano2zm | ⊢ ( ( 𝐶 ↑ ( 𝑁  −  1 ) )  ∈  ℤ  →  ( ( 𝐶 ↑ ( 𝑁  −  1 ) )  −  1 )  ∈  ℤ ) | 
						
							| 106 | 54 105 | syl | ⊢ ( 𝜑  →  ( ( 𝐶 ↑ ( 𝑁  −  1 ) )  −  1 )  ∈  ℤ ) | 
						
							| 107 | 36 | nnred | ⊢ ( 𝜑  →  𝑁  ∈  ℝ ) | 
						
							| 108 | 35 | simprd | ⊢ ( 𝜑  →  1  <  𝑁 ) | 
						
							| 109 |  | 1mod | ⊢ ( ( 𝑁  ∈  ℝ  ∧  1  <  𝑁 )  →  ( 1  mod  𝑁 )  =  1 ) | 
						
							| 110 | 107 108 109 | syl2anc | ⊢ ( 𝜑  →  ( 1  mod  𝑁 )  =  1 ) | 
						
							| 111 | 10 110 | eqtr4d | ⊢ ( 𝜑  →  ( ( 𝐶 ↑ ( 𝑁  −  1 ) )  mod  𝑁 )  =  ( 1  mod  𝑁 ) ) | 
						
							| 112 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 113 |  | moddvds | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐶 ↑ ( 𝑁  −  1 ) )  ∈  ℤ  ∧  1  ∈  ℤ )  →  ( ( ( 𝐶 ↑ ( 𝑁  −  1 ) )  mod  𝑁 )  =  ( 1  mod  𝑁 )  ↔  𝑁  ∥  ( ( 𝐶 ↑ ( 𝑁  −  1 ) )  −  1 ) ) ) | 
						
							| 114 | 36 54 112 113 | syl3anc | ⊢ ( 𝜑  →  ( ( ( 𝐶 ↑ ( 𝑁  −  1 ) )  mod  𝑁 )  =  ( 1  mod  𝑁 )  ↔  𝑁  ∥  ( ( 𝐶 ↑ ( 𝑁  −  1 ) )  −  1 ) ) ) | 
						
							| 115 | 111 114 | mpbid | ⊢ ( 𝜑  →  𝑁  ∥  ( ( 𝐶 ↑ ( 𝑁  −  1 ) )  −  1 ) ) | 
						
							| 116 | 19 37 106 6 115 | dvdstrd | ⊢ ( 𝜑  →  𝑃  ∥  ( ( 𝐶 ↑ ( 𝑁  −  1 ) )  −  1 ) ) | 
						
							| 117 |  | odzdvds | ⊢ ( ( ( 𝑃  ∈  ℕ  ∧  𝐶  ∈  ℤ  ∧  ( 𝐶  gcd  𝑃 )  =  1 )  ∧  ( 𝑁  −  1 )  ∈  ℕ0 )  →  ( 𝑃  ∥  ( ( 𝐶 ↑ ( 𝑁  −  1 ) )  −  1 )  ↔  ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 )  ∥  ( 𝑁  −  1 ) ) ) | 
						
							| 118 | 18 9 75 52 117 | syl31anc | ⊢ ( 𝜑  →  ( 𝑃  ∥  ( ( 𝐶 ↑ ( 𝑁  −  1 ) )  −  1 )  ↔  ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 )  ∥  ( 𝑁  −  1 ) ) ) | 
						
							| 119 | 116 118 | mpbid | ⊢ ( 𝜑  →  ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 )  ∥  ( 𝑁  −  1 ) ) | 
						
							| 120 | 51 | nncnd | ⊢ ( 𝜑  →  ( 𝑁  −  1 )  ∈  ℂ ) | 
						
							| 121 | 15 | nncnd | ⊢ ( 𝜑  →  ( 𝑄 ↑ ( 𝑄  pCnt  𝐴 ) )  ∈  ℂ ) | 
						
							| 122 | 120 121 101 | divcan1d | ⊢ ( 𝜑  →  ( ( ( 𝑁  −  1 )  /  ( 𝑄 ↑ ( 𝑄  pCnt  𝐴 ) ) )  ·  ( 𝑄 ↑ ( 𝑄  pCnt  𝐴 ) ) )  =  ( 𝑁  −  1 ) ) | 
						
							| 123 | 119 122 | breqtrrd | ⊢ ( 𝜑  →  ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 )  ∥  ( ( ( 𝑁  −  1 )  /  ( 𝑄 ↑ ( 𝑄  pCnt  𝐴 ) ) )  ·  ( 𝑄 ↑ ( 𝑄  pCnt  𝐴 ) ) ) ) | 
						
							| 124 |  | nprmdvds1 | ⊢ ( 𝑃  ∈  ℙ  →  ¬  𝑃  ∥  1 ) | 
						
							| 125 | 5 124 | syl | ⊢ ( 𝜑  →  ¬  𝑃  ∥  1 ) | 
						
							| 126 | 13 | nnzd | ⊢ ( 𝜑  →  𝑄  ∈  ℤ ) | 
						
							| 127 |  | iddvdsexp | ⊢ ( ( 𝑄  ∈  ℤ  ∧  ( 𝑄  pCnt  𝐴 )  ∈  ℕ )  →  𝑄  ∥  ( 𝑄 ↑ ( 𝑄  pCnt  𝐴 ) ) ) | 
						
							| 128 | 126 8 127 | syl2anc | ⊢ ( 𝜑  →  𝑄  ∥  ( 𝑄 ↑ ( 𝑄  pCnt  𝐴 ) ) ) | 
						
							| 129 | 126 16 87 128 100 | dvdstrd | ⊢ ( 𝜑  →  𝑄  ∥  ( 𝑁  −  1 ) ) | 
						
							| 130 | 13 | nnne0d | ⊢ ( 𝜑  →  𝑄  ≠  0 ) | 
						
							| 131 |  | dvdsval2 | ⊢ ( ( 𝑄  ∈  ℤ  ∧  𝑄  ≠  0  ∧  ( 𝑁  −  1 )  ∈  ℤ )  →  ( 𝑄  ∥  ( 𝑁  −  1 )  ↔  ( ( 𝑁  −  1 )  /  𝑄 )  ∈  ℤ ) ) | 
						
							| 132 | 126 130 87 131 | syl3anc | ⊢ ( 𝜑  →  ( 𝑄  ∥  ( 𝑁  −  1 )  ↔  ( ( 𝑁  −  1 )  /  𝑄 )  ∈  ℤ ) ) | 
						
							| 133 | 129 132 | mpbid | ⊢ ( 𝜑  →  ( ( 𝑁  −  1 )  /  𝑄 )  ∈  ℤ ) | 
						
							| 134 | 52 | nn0ge0d | ⊢ ( 𝜑  →  0  ≤  ( 𝑁  −  1 ) ) | 
						
							| 135 | 51 | nnred | ⊢ ( 𝜑  →  ( 𝑁  −  1 )  ∈  ℝ ) | 
						
							| 136 | 13 | nnred | ⊢ ( 𝜑  →  𝑄  ∈  ℝ ) | 
						
							| 137 | 13 | nngt0d | ⊢ ( 𝜑  →  0  <  𝑄 ) | 
						
							| 138 |  | ge0div | ⊢ ( ( ( 𝑁  −  1 )  ∈  ℝ  ∧  𝑄  ∈  ℝ  ∧  0  <  𝑄 )  →  ( 0  ≤  ( 𝑁  −  1 )  ↔  0  ≤  ( ( 𝑁  −  1 )  /  𝑄 ) ) ) | 
						
							| 139 | 135 136 137 138 | syl3anc | ⊢ ( 𝜑  →  ( 0  ≤  ( 𝑁  −  1 )  ↔  0  ≤  ( ( 𝑁  −  1 )  /  𝑄 ) ) ) | 
						
							| 140 | 134 139 | mpbid | ⊢ ( 𝜑  →  0  ≤  ( ( 𝑁  −  1 )  /  𝑄 ) ) | 
						
							| 141 |  | elnn0z | ⊢ ( ( ( 𝑁  −  1 )  /  𝑄 )  ∈  ℕ0  ↔  ( ( ( 𝑁  −  1 )  /  𝑄 )  ∈  ℤ  ∧  0  ≤  ( ( 𝑁  −  1 )  /  𝑄 ) ) ) | 
						
							| 142 | 133 140 141 | sylanbrc | ⊢ ( 𝜑  →  ( ( 𝑁  −  1 )  /  𝑄 )  ∈  ℕ0 ) | 
						
							| 143 |  | zexpcl | ⊢ ( ( 𝐶  ∈  ℤ  ∧  ( ( 𝑁  −  1 )  /  𝑄 )  ∈  ℕ0 )  →  ( 𝐶 ↑ ( ( 𝑁  −  1 )  /  𝑄 ) )  ∈  ℤ ) | 
						
							| 144 | 9 142 143 | syl2anc | ⊢ ( 𝜑  →  ( 𝐶 ↑ ( ( 𝑁  −  1 )  /  𝑄 ) )  ∈  ℤ ) | 
						
							| 145 |  | peano2zm | ⊢ ( ( 𝐶 ↑ ( ( 𝑁  −  1 )  /  𝑄 ) )  ∈  ℤ  →  ( ( 𝐶 ↑ ( ( 𝑁  −  1 )  /  𝑄 ) )  −  1 )  ∈  ℤ ) | 
						
							| 146 | 144 145 | syl | ⊢ ( 𝜑  →  ( ( 𝐶 ↑ ( ( 𝑁  −  1 )  /  𝑄 ) )  −  1 )  ∈  ℤ ) | 
						
							| 147 |  | dvdsgcd | ⊢ ( ( 𝑃  ∈  ℤ  ∧  ( ( 𝐶 ↑ ( ( 𝑁  −  1 )  /  𝑄 ) )  −  1 )  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ( 𝑃  ∥  ( ( 𝐶 ↑ ( ( 𝑁  −  1 )  /  𝑄 ) )  −  1 )  ∧  𝑃  ∥  𝑁 )  →  𝑃  ∥  ( ( ( 𝐶 ↑ ( ( 𝑁  −  1 )  /  𝑄 ) )  −  1 )  gcd  𝑁 ) ) ) | 
						
							| 148 | 19 146 37 147 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝑃  ∥  ( ( 𝐶 ↑ ( ( 𝑁  −  1 )  /  𝑄 ) )  −  1 )  ∧  𝑃  ∥  𝑁 )  →  𝑃  ∥  ( ( ( 𝐶 ↑ ( ( 𝑁  −  1 )  /  𝑄 ) )  −  1 )  gcd  𝑁 ) ) ) | 
						
							| 149 | 6 148 | mpan2d | ⊢ ( 𝜑  →  ( 𝑃  ∥  ( ( 𝐶 ↑ ( ( 𝑁  −  1 )  /  𝑄 ) )  −  1 )  →  𝑃  ∥  ( ( ( 𝐶 ↑ ( ( 𝑁  −  1 )  /  𝑄 ) )  −  1 )  gcd  𝑁 ) ) ) | 
						
							| 150 |  | odzdvds | ⊢ ( ( ( 𝑃  ∈  ℕ  ∧  𝐶  ∈  ℤ  ∧  ( 𝐶  gcd  𝑃 )  =  1 )  ∧  ( ( 𝑁  −  1 )  /  𝑄 )  ∈  ℕ0 )  →  ( 𝑃  ∥  ( ( 𝐶 ↑ ( ( 𝑁  −  1 )  /  𝑄 ) )  −  1 )  ↔  ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 )  ∥  ( ( 𝑁  −  1 )  /  𝑄 ) ) ) | 
						
							| 151 | 18 9 75 142 150 | syl31anc | ⊢ ( 𝜑  →  ( 𝑃  ∥  ( ( 𝐶 ↑ ( ( 𝑁  −  1 )  /  𝑄 ) )  −  1 )  ↔  ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 )  ∥  ( ( 𝑁  −  1 )  /  𝑄 ) ) ) | 
						
							| 152 | 13 | nncnd | ⊢ ( 𝜑  →  𝑄  ∈  ℂ ) | 
						
							| 153 | 8 | nnzd | ⊢ ( 𝜑  →  ( 𝑄  pCnt  𝐴 )  ∈  ℤ ) | 
						
							| 154 | 152 130 153 | expm1d | ⊢ ( 𝜑  →  ( 𝑄 ↑ ( ( 𝑄  pCnt  𝐴 )  −  1 ) )  =  ( ( 𝑄 ↑ ( 𝑄  pCnt  𝐴 ) )  /  𝑄 ) ) | 
						
							| 155 | 154 | oveq2d | ⊢ ( 𝜑  →  ( ( ( 𝑁  −  1 )  /  ( 𝑄 ↑ ( 𝑄  pCnt  𝐴 ) ) )  ·  ( 𝑄 ↑ ( ( 𝑄  pCnt  𝐴 )  −  1 ) ) )  =  ( ( ( 𝑁  −  1 )  /  ( 𝑄 ↑ ( 𝑄  pCnt  𝐴 ) ) )  ·  ( ( 𝑄 ↑ ( 𝑄  pCnt  𝐴 ) )  /  𝑄 ) ) ) | 
						
							| 156 | 135 15 | nndivred | ⊢ ( 𝜑  →  ( ( 𝑁  −  1 )  /  ( 𝑄 ↑ ( 𝑄  pCnt  𝐴 ) ) )  ∈  ℝ ) | 
						
							| 157 | 156 | recnd | ⊢ ( 𝜑  →  ( ( 𝑁  −  1 )  /  ( 𝑄 ↑ ( 𝑄  pCnt  𝐴 ) ) )  ∈  ℂ ) | 
						
							| 158 | 157 121 152 130 | divassd | ⊢ ( 𝜑  →  ( ( ( ( 𝑁  −  1 )  /  ( 𝑄 ↑ ( 𝑄  pCnt  𝐴 ) ) )  ·  ( 𝑄 ↑ ( 𝑄  pCnt  𝐴 ) ) )  /  𝑄 )  =  ( ( ( 𝑁  −  1 )  /  ( 𝑄 ↑ ( 𝑄  pCnt  𝐴 ) ) )  ·  ( ( 𝑄 ↑ ( 𝑄  pCnt  𝐴 ) )  /  𝑄 ) ) ) | 
						
							| 159 | 122 | oveq1d | ⊢ ( 𝜑  →  ( ( ( ( 𝑁  −  1 )  /  ( 𝑄 ↑ ( 𝑄  pCnt  𝐴 ) ) )  ·  ( 𝑄 ↑ ( 𝑄  pCnt  𝐴 ) ) )  /  𝑄 )  =  ( ( 𝑁  −  1 )  /  𝑄 ) ) | 
						
							| 160 | 155 158 159 | 3eqtr2d | ⊢ ( 𝜑  →  ( ( ( 𝑁  −  1 )  /  ( 𝑄 ↑ ( 𝑄  pCnt  𝐴 ) ) )  ·  ( 𝑄 ↑ ( ( 𝑄  pCnt  𝐴 )  −  1 ) ) )  =  ( ( 𝑁  −  1 )  /  𝑄 ) ) | 
						
							| 161 | 160 | breq2d | ⊢ ( 𝜑  →  ( ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 )  ∥  ( ( ( 𝑁  −  1 )  /  ( 𝑄 ↑ ( 𝑄  pCnt  𝐴 ) ) )  ·  ( 𝑄 ↑ ( ( 𝑄  pCnt  𝐴 )  −  1 ) ) )  ↔  ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 )  ∥  ( ( 𝑁  −  1 )  /  𝑄 ) ) ) | 
						
							| 162 | 151 161 | bitr4d | ⊢ ( 𝜑  →  ( 𝑃  ∥  ( ( 𝐶 ↑ ( ( 𝑁  −  1 )  /  𝑄 ) )  −  1 )  ↔  ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 )  ∥  ( ( ( 𝑁  −  1 )  /  ( 𝑄 ↑ ( 𝑄  pCnt  𝐴 ) ) )  ·  ( 𝑄 ↑ ( ( 𝑄  pCnt  𝐴 )  −  1 ) ) ) ) ) | 
						
							| 163 | 11 | breq2d | ⊢ ( 𝜑  →  ( 𝑃  ∥  ( ( ( 𝐶 ↑ ( ( 𝑁  −  1 )  /  𝑄 ) )  −  1 )  gcd  𝑁 )  ↔  𝑃  ∥  1 ) ) | 
						
							| 164 | 149 162 163 | 3imtr3d | ⊢ ( 𝜑  →  ( ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 )  ∥  ( ( ( 𝑁  −  1 )  /  ( 𝑄 ↑ ( 𝑄  pCnt  𝐴 ) ) )  ·  ( 𝑄 ↑ ( ( 𝑄  pCnt  𝐴 )  −  1 ) ) )  →  𝑃  ∥  1 ) ) | 
						
							| 165 | 125 164 | mtod | ⊢ ( 𝜑  →  ¬  ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 )  ∥  ( ( ( 𝑁  −  1 )  /  ( 𝑄 ↑ ( 𝑄  pCnt  𝐴 ) ) )  ·  ( 𝑄 ↑ ( ( 𝑄  pCnt  𝐴 )  −  1 ) ) ) ) | 
						
							| 166 |  | prmpwdvds | ⊢ ( ( ( ( ( 𝑁  −  1 )  /  ( 𝑄 ↑ ( 𝑄  pCnt  𝐴 ) ) )  ∈  ℤ  ∧  ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 )  ∈  ℤ )  ∧  ( 𝑄  ∈  ℙ  ∧  ( 𝑄  pCnt  𝐴 )  ∈  ℕ )  ∧  ( ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 )  ∥  ( ( ( 𝑁  −  1 )  /  ( 𝑄 ↑ ( 𝑄  pCnt  𝐴 ) ) )  ·  ( 𝑄 ↑ ( 𝑄  pCnt  𝐴 ) ) )  ∧  ¬  ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 )  ∥  ( ( ( 𝑁  −  1 )  /  ( 𝑄 ↑ ( 𝑄  pCnt  𝐴 ) ) )  ·  ( 𝑄 ↑ ( ( 𝑄  pCnt  𝐴 )  −  1 ) ) ) ) )  →  ( 𝑄 ↑ ( 𝑄  pCnt  𝐴 ) )  ∥  ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 ) ) | 
						
							| 167 | 104 78 7 8 123 165 166 | syl222anc | ⊢ ( 𝜑  →  ( 𝑄 ↑ ( 𝑄  pCnt  𝐴 ) )  ∥  ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 ) ) | 
						
							| 168 |  | odzphi | ⊢ ( ( 𝑃  ∈  ℕ  ∧  𝐶  ∈  ℤ  ∧  ( 𝐶  gcd  𝑃 )  =  1 )  →  ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 )  ∥  ( ϕ ‘ 𝑃 ) ) | 
						
							| 169 | 18 9 75 168 | syl3anc | ⊢ ( 𝜑  →  ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 )  ∥  ( ϕ ‘ 𝑃 ) ) | 
						
							| 170 |  | phiprm | ⊢ ( 𝑃  ∈  ℙ  →  ( ϕ ‘ 𝑃 )  =  ( 𝑃  −  1 ) ) | 
						
							| 171 | 5 170 | syl | ⊢ ( 𝜑  →  ( ϕ ‘ 𝑃 )  =  ( 𝑃  −  1 ) ) | 
						
							| 172 | 169 171 | breqtrd | ⊢ ( 𝜑  →  ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 )  ∥  ( 𝑃  −  1 ) ) | 
						
							| 173 | 16 78 85 167 172 | dvdstrd | ⊢ ( 𝜑  →  ( 𝑄 ↑ ( 𝑄  pCnt  𝐴 ) )  ∥  ( 𝑃  −  1 ) ) | 
						
							| 174 |  | pcdvdsb | ⊢ ( ( 𝑄  ∈  ℙ  ∧  ( 𝑃  −  1 )  ∈  ℤ  ∧  ( 𝑄  pCnt  𝐴 )  ∈  ℕ0 )  →  ( ( 𝑄  pCnt  𝐴 )  ≤  ( 𝑄  pCnt  ( 𝑃  −  1 ) )  ↔  ( 𝑄 ↑ ( 𝑄  pCnt  𝐴 ) )  ∥  ( 𝑃  −  1 ) ) ) | 
						
							| 175 | 7 85 14 174 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝑄  pCnt  𝐴 )  ≤  ( 𝑄  pCnt  ( 𝑃  −  1 ) )  ↔  ( 𝑄 ↑ ( 𝑄  pCnt  𝐴 ) )  ∥  ( 𝑃  −  1 ) ) ) | 
						
							| 176 | 173 175 | mpbird | ⊢ ( 𝜑  →  ( 𝑄  pCnt  𝐴 )  ≤  ( 𝑄  pCnt  ( 𝑃  −  1 ) ) ) |