Step |
Hyp |
Ref |
Expression |
1 |
|
df-po |
⊢ ( 𝑅 Po 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) |
2 |
1
|
biimpi |
⊢ ( 𝑅 Po 𝐴 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) |
3 |
|
id |
⊢ ( 𝑥 = 𝐵 → 𝑥 = 𝐵 ) |
4 |
3 3
|
breq12d |
⊢ ( 𝑥 = 𝐵 → ( 𝑥 𝑅 𝑥 ↔ 𝐵 𝑅 𝐵 ) ) |
5 |
4
|
notbid |
⊢ ( 𝑥 = 𝐵 → ( ¬ 𝑥 𝑅 𝑥 ↔ ¬ 𝐵 𝑅 𝐵 ) ) |
6 |
|
breq1 |
⊢ ( 𝑥 = 𝐵 → ( 𝑥 𝑅 𝑦 ↔ 𝐵 𝑅 𝑦 ) ) |
7 |
6
|
anbi1d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ↔ ( 𝐵 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ) ) |
8 |
|
breq1 |
⊢ ( 𝑥 = 𝐵 → ( 𝑥 𝑅 𝑧 ↔ 𝐵 𝑅 𝑧 ) ) |
9 |
7 8
|
imbi12d |
⊢ ( 𝑥 = 𝐵 → ( ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ↔ ( ( 𝐵 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝐵 𝑅 𝑧 ) ) ) |
10 |
5 9
|
anbi12d |
⊢ ( 𝑥 = 𝐵 → ( ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ↔ ( ¬ 𝐵 𝑅 𝐵 ∧ ( ( 𝐵 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝐵 𝑅 𝑧 ) ) ) ) |
11 |
|
breq2 |
⊢ ( 𝑦 = 𝐶 → ( 𝐵 𝑅 𝑦 ↔ 𝐵 𝑅 𝐶 ) ) |
12 |
|
breq1 |
⊢ ( 𝑦 = 𝐶 → ( 𝑦 𝑅 𝑧 ↔ 𝐶 𝑅 𝑧 ) ) |
13 |
11 12
|
anbi12d |
⊢ ( 𝑦 = 𝐶 → ( ( 𝐵 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ↔ ( 𝐵 𝑅 𝐶 ∧ 𝐶 𝑅 𝑧 ) ) ) |
14 |
13
|
imbi1d |
⊢ ( 𝑦 = 𝐶 → ( ( ( 𝐵 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝐵 𝑅 𝑧 ) ↔ ( ( 𝐵 𝑅 𝐶 ∧ 𝐶 𝑅 𝑧 ) → 𝐵 𝑅 𝑧 ) ) ) |
15 |
14
|
anbi2d |
⊢ ( 𝑦 = 𝐶 → ( ( ¬ 𝐵 𝑅 𝐵 ∧ ( ( 𝐵 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝐵 𝑅 𝑧 ) ) ↔ ( ¬ 𝐵 𝑅 𝐵 ∧ ( ( 𝐵 𝑅 𝐶 ∧ 𝐶 𝑅 𝑧 ) → 𝐵 𝑅 𝑧 ) ) ) ) |
16 |
|
breq2 |
⊢ ( 𝑧 = 𝐷 → ( 𝐶 𝑅 𝑧 ↔ 𝐶 𝑅 𝐷 ) ) |
17 |
16
|
anbi2d |
⊢ ( 𝑧 = 𝐷 → ( ( 𝐵 𝑅 𝐶 ∧ 𝐶 𝑅 𝑧 ) ↔ ( 𝐵 𝑅 𝐶 ∧ 𝐶 𝑅 𝐷 ) ) ) |
18 |
|
breq2 |
⊢ ( 𝑧 = 𝐷 → ( 𝐵 𝑅 𝑧 ↔ 𝐵 𝑅 𝐷 ) ) |
19 |
17 18
|
imbi12d |
⊢ ( 𝑧 = 𝐷 → ( ( ( 𝐵 𝑅 𝐶 ∧ 𝐶 𝑅 𝑧 ) → 𝐵 𝑅 𝑧 ) ↔ ( ( 𝐵 𝑅 𝐶 ∧ 𝐶 𝑅 𝐷 ) → 𝐵 𝑅 𝐷 ) ) ) |
20 |
19
|
anbi2d |
⊢ ( 𝑧 = 𝐷 → ( ( ¬ 𝐵 𝑅 𝐵 ∧ ( ( 𝐵 𝑅 𝐶 ∧ 𝐶 𝑅 𝑧 ) → 𝐵 𝑅 𝑧 ) ) ↔ ( ¬ 𝐵 𝑅 𝐵 ∧ ( ( 𝐵 𝑅 𝐶 ∧ 𝐶 𝑅 𝐷 ) → 𝐵 𝑅 𝐷 ) ) ) ) |
21 |
10 15 20
|
rspc3v |
⊢ ( ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) → ( ¬ 𝐵 𝑅 𝐵 ∧ ( ( 𝐵 𝑅 𝐶 ∧ 𝐶 𝑅 𝐷 ) → 𝐵 𝑅 𝐷 ) ) ) ) |
22 |
2 21
|
syl5com |
⊢ ( 𝑅 Po 𝐴 → ( ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) → ( ¬ 𝐵 𝑅 𝐵 ∧ ( ( 𝐵 𝑅 𝐶 ∧ 𝐶 𝑅 𝐷 ) → 𝐵 𝑅 𝐷 ) ) ) ) |