Step |
Hyp |
Ref |
Expression |
1 |
|
breq |
⊢ ( 𝑅 = 𝑆 → ( 𝑥 𝑅 𝑥 ↔ 𝑥 𝑆 𝑥 ) ) |
2 |
1
|
notbid |
⊢ ( 𝑅 = 𝑆 → ( ¬ 𝑥 𝑅 𝑥 ↔ ¬ 𝑥 𝑆 𝑥 ) ) |
3 |
|
breq |
⊢ ( 𝑅 = 𝑆 → ( 𝑥 𝑅 𝑦 ↔ 𝑥 𝑆 𝑦 ) ) |
4 |
|
breq |
⊢ ( 𝑅 = 𝑆 → ( 𝑦 𝑅 𝑧 ↔ 𝑦 𝑆 𝑧 ) ) |
5 |
3 4
|
anbi12d |
⊢ ( 𝑅 = 𝑆 → ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ↔ ( 𝑥 𝑆 𝑦 ∧ 𝑦 𝑆 𝑧 ) ) ) |
6 |
|
breq |
⊢ ( 𝑅 = 𝑆 → ( 𝑥 𝑅 𝑧 ↔ 𝑥 𝑆 𝑧 ) ) |
7 |
5 6
|
imbi12d |
⊢ ( 𝑅 = 𝑆 → ( ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ↔ ( ( 𝑥 𝑆 𝑦 ∧ 𝑦 𝑆 𝑧 ) → 𝑥 𝑆 𝑧 ) ) ) |
8 |
2 7
|
anbi12d |
⊢ ( 𝑅 = 𝑆 → ( ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ↔ ( ¬ 𝑥 𝑆 𝑥 ∧ ( ( 𝑥 𝑆 𝑦 ∧ 𝑦 𝑆 𝑧 ) → 𝑥 𝑆 𝑧 ) ) ) ) |
9 |
8
|
ralbidv |
⊢ ( 𝑅 = 𝑆 → ( ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ↔ ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑥 𝑆 𝑥 ∧ ( ( 𝑥 𝑆 𝑦 ∧ 𝑦 𝑆 𝑧 ) → 𝑥 𝑆 𝑧 ) ) ) ) |
10 |
9
|
2ralbidv |
⊢ ( 𝑅 = 𝑆 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑥 𝑆 𝑥 ∧ ( ( 𝑥 𝑆 𝑦 ∧ 𝑦 𝑆 𝑧 ) → 𝑥 𝑆 𝑧 ) ) ) ) |
11 |
|
df-po |
⊢ ( 𝑅 Po 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) |
12 |
|
df-po |
⊢ ( 𝑆 Po 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑥 𝑆 𝑥 ∧ ( ( 𝑥 𝑆 𝑦 ∧ 𝑦 𝑆 𝑧 ) → 𝑥 𝑆 𝑧 ) ) ) |
13 |
10 11 12
|
3bitr4g |
⊢ ( 𝑅 = 𝑆 → ( 𝑅 Po 𝐴 ↔ 𝑆 Po 𝐴 ) ) |