Metamath Proof Explorer


Theorem poeq12d

Description: Equality deduction for partial orderings. (Contributed by Matthew House, 10-Sep-2025)

Ref Expression
Hypotheses poeq12d.1 ( 𝜑𝑅 = 𝑆 )
poeq12d.2 ( 𝜑𝐴 = 𝐵 )
Assertion poeq12d ( 𝜑 → ( 𝑅 Po 𝐴𝑆 Po 𝐵 ) )

Proof

Step Hyp Ref Expression
1 poeq12d.1 ( 𝜑𝑅 = 𝑆 )
2 poeq12d.2 ( 𝜑𝐴 = 𝐵 )
3 poeq1 ( 𝑅 = 𝑆 → ( 𝑅 Po 𝐴𝑆 Po 𝐴 ) )
4 poeq2 ( 𝐴 = 𝐵 → ( 𝑆 Po 𝐴𝑆 Po 𝐵 ) )
5 3 4 sylan9bb ( ( 𝑅 = 𝑆𝐴 = 𝐵 ) → ( 𝑅 Po 𝐴𝑆 Po 𝐵 ) )
6 1 2 5 syl2anc ( 𝜑 → ( 𝑅 Po 𝐴𝑆 Po 𝐵 ) )