Metamath Proof Explorer


Theorem poeq2

Description: Equality theorem for partial ordering predicate. (Contributed by NM, 27-Mar-1997)

Ref Expression
Assertion poeq2 ( 𝐴 = 𝐵 → ( 𝑅 Po 𝐴𝑅 Po 𝐵 ) )

Proof

Step Hyp Ref Expression
1 eqimss2 ( 𝐴 = 𝐵𝐵𝐴 )
2 poss ( 𝐵𝐴 → ( 𝑅 Po 𝐴𝑅 Po 𝐵 ) )
3 1 2 syl ( 𝐴 = 𝐵 → ( 𝑅 Po 𝐴𝑅 Po 𝐵 ) )
4 eqimss ( 𝐴 = 𝐵𝐴𝐵 )
5 poss ( 𝐴𝐵 → ( 𝑅 Po 𝐵𝑅 Po 𝐴 ) )
6 4 5 syl ( 𝐴 = 𝐵 → ( 𝑅 Po 𝐵𝑅 Po 𝐴 ) )
7 3 6 impbid ( 𝐴 = 𝐵 → ( 𝑅 Po 𝐴𝑅 Po 𝐵 ) )