Step |
Hyp |
Ref |
Expression |
1 |
|
pointpsub.p |
⊢ 𝑃 = ( Points ‘ 𝐾 ) |
2 |
|
pointpsub.s |
⊢ 𝑆 = ( PSubSp ‘ 𝐾 ) |
3 |
|
eqid |
⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) |
4 |
3 1
|
ispointN |
⊢ ( 𝐾 ∈ AtLat → ( 𝑋 ∈ 𝑃 ↔ ∃ 𝑞 ∈ ( Atoms ‘ 𝐾 ) 𝑋 = { 𝑞 } ) ) |
5 |
3 2
|
snatpsubN |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) → { 𝑞 } ∈ 𝑆 ) |
6 |
5
|
ex |
⊢ ( 𝐾 ∈ AtLat → ( 𝑞 ∈ ( Atoms ‘ 𝐾 ) → { 𝑞 } ∈ 𝑆 ) ) |
7 |
|
eleq1a |
⊢ ( { 𝑞 } ∈ 𝑆 → ( 𝑋 = { 𝑞 } → 𝑋 ∈ 𝑆 ) ) |
8 |
6 7
|
syl6 |
⊢ ( 𝐾 ∈ AtLat → ( 𝑞 ∈ ( Atoms ‘ 𝐾 ) → ( 𝑋 = { 𝑞 } → 𝑋 ∈ 𝑆 ) ) ) |
9 |
8
|
rexlimdv |
⊢ ( 𝐾 ∈ AtLat → ( ∃ 𝑞 ∈ ( Atoms ‘ 𝐾 ) 𝑋 = { 𝑞 } → 𝑋 ∈ 𝑆 ) ) |
10 |
4 9
|
sylbid |
⊢ ( 𝐾 ∈ AtLat → ( 𝑋 ∈ 𝑃 → 𝑋 ∈ 𝑆 ) ) |
11 |
10
|
imp |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝑃 ) → 𝑋 ∈ 𝑆 ) |