Metamath Proof Explorer


Theorem pointpsubN

Description: A point (singleton of an atom) is a projective subspace. Remark below Definition 15.1 of MaedaMaeda p. 61. (Contributed by NM, 13-Oct-2011) (New usage is discouraged.)

Ref Expression
Hypotheses pointpsub.p 𝑃 = ( Points ‘ 𝐾 )
pointpsub.s 𝑆 = ( PSubSp ‘ 𝐾 )
Assertion pointpsubN ( ( 𝐾 ∈ AtLat ∧ 𝑋𝑃 ) → 𝑋𝑆 )

Proof

Step Hyp Ref Expression
1 pointpsub.p 𝑃 = ( Points ‘ 𝐾 )
2 pointpsub.s 𝑆 = ( PSubSp ‘ 𝐾 )
3 eqid ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 )
4 3 1 ispointN ( 𝐾 ∈ AtLat → ( 𝑋𝑃 ↔ ∃ 𝑞 ∈ ( Atoms ‘ 𝐾 ) 𝑋 = { 𝑞 } ) )
5 3 2 snatpsubN ( ( 𝐾 ∈ AtLat ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) → { 𝑞 } ∈ 𝑆 )
6 5 ex ( 𝐾 ∈ AtLat → ( 𝑞 ∈ ( Atoms ‘ 𝐾 ) → { 𝑞 } ∈ 𝑆 ) )
7 eleq1a ( { 𝑞 } ∈ 𝑆 → ( 𝑋 = { 𝑞 } → 𝑋𝑆 ) )
8 6 7 syl6 ( 𝐾 ∈ AtLat → ( 𝑞 ∈ ( Atoms ‘ 𝐾 ) → ( 𝑋 = { 𝑞 } → 𝑋𝑆 ) ) )
9 8 rexlimdv ( 𝐾 ∈ AtLat → ( ∃ 𝑞 ∈ ( Atoms ‘ 𝐾 ) 𝑋 = { 𝑞 } → 𝑋𝑆 ) )
10 4 9 sylbid ( 𝐾 ∈ AtLat → ( 𝑋𝑃𝑋𝑆 ) )
11 10 imp ( ( 𝐾 ∈ AtLat ∧ 𝑋𝑃 ) → 𝑋𝑆 )