Metamath Proof Explorer


Theorem pointsetN

Description: The set of points in a Hilbert lattice. (Contributed by NM, 2-Oct-2011) (New usage is discouraged.)

Ref Expression
Hypotheses pointset.a 𝐴 = ( Atoms ‘ 𝐾 )
pointset.p 𝑃 = ( Points ‘ 𝐾 )
Assertion pointsetN ( 𝐾𝐵𝑃 = { 𝑝 ∣ ∃ 𝑎𝐴 𝑝 = { 𝑎 } } )

Proof

Step Hyp Ref Expression
1 pointset.a 𝐴 = ( Atoms ‘ 𝐾 )
2 pointset.p 𝑃 = ( Points ‘ 𝐾 )
3 elex ( 𝐾𝐵𝐾 ∈ V )
4 fveq2 ( 𝑘 = 𝐾 → ( Atoms ‘ 𝑘 ) = ( Atoms ‘ 𝐾 ) )
5 4 1 eqtr4di ( 𝑘 = 𝐾 → ( Atoms ‘ 𝑘 ) = 𝐴 )
6 5 rexeqdv ( 𝑘 = 𝐾 → ( ∃ 𝑎 ∈ ( Atoms ‘ 𝑘 ) 𝑝 = { 𝑎 } ↔ ∃ 𝑎𝐴 𝑝 = { 𝑎 } ) )
7 6 abbidv ( 𝑘 = 𝐾 → { 𝑝 ∣ ∃ 𝑎 ∈ ( Atoms ‘ 𝑘 ) 𝑝 = { 𝑎 } } = { 𝑝 ∣ ∃ 𝑎𝐴 𝑝 = { 𝑎 } } )
8 df-pointsN Points = ( 𝑘 ∈ V ↦ { 𝑝 ∣ ∃ 𝑎 ∈ ( Atoms ‘ 𝑘 ) 𝑝 = { 𝑎 } } )
9 1 fvexi 𝐴 ∈ V
10 9 abrexex { 𝑝 ∣ ∃ 𝑎𝐴 𝑝 = { 𝑎 } } ∈ V
11 7 8 10 fvmpt ( 𝐾 ∈ V → ( Points ‘ 𝐾 ) = { 𝑝 ∣ ∃ 𝑎𝐴 𝑝 = { 𝑎 } } )
12 2 11 syl5eq ( 𝐾 ∈ V → 𝑃 = { 𝑝 ∣ ∃ 𝑎𝐴 𝑝 = { 𝑎 } } )
13 3 12 syl ( 𝐾𝐵𝑃 = { 𝑝 ∣ ∃ 𝑎𝐴 𝑝 = { 𝑎 } } )