Metamath Proof Explorer


Theorem poirr

Description: A partial order is irreflexive. (Contributed by NM, 27-Mar-1997)

Ref Expression
Assertion poirr ( ( 𝑅 Po 𝐴𝐵𝐴 ) → ¬ 𝐵 𝑅 𝐵 )

Proof

Step Hyp Ref Expression
1 df-3an ( ( 𝐵𝐴𝐵𝐴𝐵𝐴 ) ↔ ( ( 𝐵𝐴𝐵𝐴 ) ∧ 𝐵𝐴 ) )
2 anabs1 ( ( ( 𝐵𝐴𝐵𝐴 ) ∧ 𝐵𝐴 ) ↔ ( 𝐵𝐴𝐵𝐴 ) )
3 anidm ( ( 𝐵𝐴𝐵𝐴 ) ↔ 𝐵𝐴 )
4 1 2 3 3bitrri ( 𝐵𝐴 ↔ ( 𝐵𝐴𝐵𝐴𝐵𝐴 ) )
5 pocl ( 𝑅 Po 𝐴 → ( ( 𝐵𝐴𝐵𝐴𝐵𝐴 ) → ( ¬ 𝐵 𝑅 𝐵 ∧ ( ( 𝐵 𝑅 𝐵𝐵 𝑅 𝐵 ) → 𝐵 𝑅 𝐵 ) ) ) )
6 5 imp ( ( 𝑅 Po 𝐴 ∧ ( 𝐵𝐴𝐵𝐴𝐵𝐴 ) ) → ( ¬ 𝐵 𝑅 𝐵 ∧ ( ( 𝐵 𝑅 𝐵𝐵 𝑅 𝐵 ) → 𝐵 𝑅 𝐵 ) ) )
7 6 simpld ( ( 𝑅 Po 𝐴 ∧ ( 𝐵𝐴𝐵𝐴𝐵𝐴 ) ) → ¬ 𝐵 𝑅 𝐵 )
8 4 7 sylan2b ( ( 𝑅 Po 𝐴𝐵𝐴 ) → ¬ 𝐵 𝑅 𝐵 )