Step |
Hyp |
Ref |
Expression |
1 |
|
relres |
⊢ Rel ( I ↾ 𝐴 ) |
2 |
|
relin2 |
⊢ ( Rel ( I ↾ 𝐴 ) → Rel ( 𝑅 ∩ ( I ↾ 𝐴 ) ) ) |
3 |
1 2
|
mp1i |
⊢ ( 𝑅 Po 𝐴 → Rel ( 𝑅 ∩ ( I ↾ 𝐴 ) ) ) |
4 |
|
df-br |
⊢ ( 𝑥 ( 𝑅 ∩ ( I ↾ 𝐴 ) ) 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ ( 𝑅 ∩ ( I ↾ 𝐴 ) ) ) |
5 |
|
brin |
⊢ ( 𝑥 ( 𝑅 ∩ ( I ↾ 𝐴 ) ) 𝑦 ↔ ( 𝑥 𝑅 𝑦 ∧ 𝑥 ( I ↾ 𝐴 ) 𝑦 ) ) |
6 |
4 5
|
bitr3i |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝑅 ∩ ( I ↾ 𝐴 ) ) ↔ ( 𝑥 𝑅 𝑦 ∧ 𝑥 ( I ↾ 𝐴 ) 𝑦 ) ) |
7 |
|
vex |
⊢ 𝑦 ∈ V |
8 |
7
|
brresi |
⊢ ( 𝑥 ( I ↾ 𝐴 ) 𝑦 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 I 𝑦 ) ) |
9 |
|
poirr |
⊢ ( ( 𝑅 Po 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ¬ 𝑥 𝑅 𝑥 ) |
10 |
7
|
ideq |
⊢ ( 𝑥 I 𝑦 ↔ 𝑥 = 𝑦 ) |
11 |
|
breq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 𝑅 𝑥 ↔ 𝑥 𝑅 𝑦 ) ) |
12 |
10 11
|
sylbi |
⊢ ( 𝑥 I 𝑦 → ( 𝑥 𝑅 𝑥 ↔ 𝑥 𝑅 𝑦 ) ) |
13 |
12
|
notbid |
⊢ ( 𝑥 I 𝑦 → ( ¬ 𝑥 𝑅 𝑥 ↔ ¬ 𝑥 𝑅 𝑦 ) ) |
14 |
9 13
|
syl5ibcom |
⊢ ( ( 𝑅 Po 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 I 𝑦 → ¬ 𝑥 𝑅 𝑦 ) ) |
15 |
14
|
expimpd |
⊢ ( 𝑅 Po 𝐴 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 I 𝑦 ) → ¬ 𝑥 𝑅 𝑦 ) ) |
16 |
8 15
|
syl5bi |
⊢ ( 𝑅 Po 𝐴 → ( 𝑥 ( I ↾ 𝐴 ) 𝑦 → ¬ 𝑥 𝑅 𝑦 ) ) |
17 |
16
|
con2d |
⊢ ( 𝑅 Po 𝐴 → ( 𝑥 𝑅 𝑦 → ¬ 𝑥 ( I ↾ 𝐴 ) 𝑦 ) ) |
18 |
|
imnan |
⊢ ( ( 𝑥 𝑅 𝑦 → ¬ 𝑥 ( I ↾ 𝐴 ) 𝑦 ) ↔ ¬ ( 𝑥 𝑅 𝑦 ∧ 𝑥 ( I ↾ 𝐴 ) 𝑦 ) ) |
19 |
17 18
|
sylib |
⊢ ( 𝑅 Po 𝐴 → ¬ ( 𝑥 𝑅 𝑦 ∧ 𝑥 ( I ↾ 𝐴 ) 𝑦 ) ) |
20 |
19
|
pm2.21d |
⊢ ( 𝑅 Po 𝐴 → ( ( 𝑥 𝑅 𝑦 ∧ 𝑥 ( I ↾ 𝐴 ) 𝑦 ) → 〈 𝑥 , 𝑦 〉 ∈ ∅ ) ) |
21 |
6 20
|
syl5bi |
⊢ ( 𝑅 Po 𝐴 → ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝑅 ∩ ( I ↾ 𝐴 ) ) → 〈 𝑥 , 𝑦 〉 ∈ ∅ ) ) |
22 |
3 21
|
relssdv |
⊢ ( 𝑅 Po 𝐴 → ( 𝑅 ∩ ( I ↾ 𝐴 ) ) ⊆ ∅ ) |
23 |
|
ss0 |
⊢ ( ( 𝑅 ∩ ( I ↾ 𝐴 ) ) ⊆ ∅ → ( 𝑅 ∩ ( I ↾ 𝐴 ) ) = ∅ ) |
24 |
22 23
|
syl |
⊢ ( 𝑅 Po 𝐴 → ( 𝑅 ∩ ( I ↾ 𝐴 ) ) = ∅ ) |