Step |
Hyp |
Ref |
Expression |
1 |
|
polssat.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
2 |
|
polssat.p |
⊢ ⊥ = ( ⊥𝑃 ‘ 𝐾 ) |
3 |
|
0ss |
⊢ ∅ ⊆ 𝐴 |
4 |
|
eqid |
⊢ ( oc ‘ 𝐾 ) = ( oc ‘ 𝐾 ) |
5 |
|
eqid |
⊢ ( pmap ‘ 𝐾 ) = ( pmap ‘ 𝐾 ) |
6 |
4 1 5 2
|
polvalN |
⊢ ( ( 𝐾 ∈ 𝐵 ∧ ∅ ⊆ 𝐴 ) → ( ⊥ ‘ ∅ ) = ( 𝐴 ∩ ∩ 𝑝 ∈ ∅ ( ( pmap ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ) ) ) |
7 |
3 6
|
mpan2 |
⊢ ( 𝐾 ∈ 𝐵 → ( ⊥ ‘ ∅ ) = ( 𝐴 ∩ ∩ 𝑝 ∈ ∅ ( ( pmap ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ) ) ) |
8 |
|
0iin |
⊢ ∩ 𝑝 ∈ ∅ ( ( pmap ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ) = V |
9 |
8
|
ineq2i |
⊢ ( 𝐴 ∩ ∩ 𝑝 ∈ ∅ ( ( pmap ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ) ) = ( 𝐴 ∩ V ) |
10 |
|
inv1 |
⊢ ( 𝐴 ∩ V ) = 𝐴 |
11 |
9 10
|
eqtri |
⊢ ( 𝐴 ∩ ∩ 𝑝 ∈ ∅ ( ( pmap ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ) ) = 𝐴 |
12 |
7 11
|
eqtrdi |
⊢ ( 𝐾 ∈ 𝐵 → ( ⊥ ‘ ∅ ) = 𝐴 ) |