Metamath Proof Explorer


Theorem pol0N

Description: The polarity of the empty projective subspace is the whole space. (Contributed by NM, 29-Oct-2011) (New usage is discouraged.)

Ref Expression
Hypotheses polssat.a 𝐴 = ( Atoms ‘ 𝐾 )
polssat.p = ( ⊥𝑃𝐾 )
Assertion pol0N ( 𝐾𝐵 → ( ‘ ∅ ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 polssat.a 𝐴 = ( Atoms ‘ 𝐾 )
2 polssat.p = ( ⊥𝑃𝐾 )
3 0ss ∅ ⊆ 𝐴
4 eqid ( oc ‘ 𝐾 ) = ( oc ‘ 𝐾 )
5 eqid ( pmap ‘ 𝐾 ) = ( pmap ‘ 𝐾 )
6 4 1 5 2 polvalN ( ( 𝐾𝐵 ∧ ∅ ⊆ 𝐴 ) → ( ‘ ∅ ) = ( 𝐴 𝑝 ∈ ∅ ( ( pmap ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ) ) )
7 3 6 mpan2 ( 𝐾𝐵 → ( ‘ ∅ ) = ( 𝐴 𝑝 ∈ ∅ ( ( pmap ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ) ) )
8 0iin 𝑝 ∈ ∅ ( ( pmap ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ) = V
9 8 ineq2i ( 𝐴 𝑝 ∈ ∅ ( ( pmap ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ) ) = ( 𝐴 ∩ V )
10 inv1 ( 𝐴 ∩ V ) = 𝐴
11 9 10 eqtri ( 𝐴 𝑝 ∈ ∅ ( ( pmap ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ) ) = 𝐴
12 7 11 eqtrdi ( 𝐾𝐵 → ( ‘ ∅ ) = 𝐴 )