Metamath Proof Explorer


Theorem polatN

Description: The polarity of the singleton of an atom (i.e. a point). (Contributed by NM, 14-Jan-2012) (New usage is discouraged.)

Ref Expression
Hypotheses polat.o = ( oc ‘ 𝐾 )
polat.a 𝐴 = ( Atoms ‘ 𝐾 )
polat.m 𝑀 = ( pmap ‘ 𝐾 )
polat.p 𝑃 = ( ⊥𝑃𝐾 )
Assertion polatN ( ( 𝐾 ∈ OL ∧ 𝑄𝐴 ) → ( 𝑃 ‘ { 𝑄 } ) = ( 𝑀 ‘ ( 𝑄 ) ) )

Proof

Step Hyp Ref Expression
1 polat.o = ( oc ‘ 𝐾 )
2 polat.a 𝐴 = ( Atoms ‘ 𝐾 )
3 polat.m 𝑀 = ( pmap ‘ 𝐾 )
4 polat.p 𝑃 = ( ⊥𝑃𝐾 )
5 snssi ( 𝑄𝐴 → { 𝑄 } ⊆ 𝐴 )
6 1 2 3 4 polvalN ( ( 𝐾 ∈ OL ∧ { 𝑄 } ⊆ 𝐴 ) → ( 𝑃 ‘ { 𝑄 } ) = ( 𝐴 𝑝 ∈ { 𝑄 } ( 𝑀 ‘ ( 𝑝 ) ) ) )
7 5 6 sylan2 ( ( 𝐾 ∈ OL ∧ 𝑄𝐴 ) → ( 𝑃 ‘ { 𝑄 } ) = ( 𝐴 𝑝 ∈ { 𝑄 } ( 𝑀 ‘ ( 𝑝 ) ) ) )
8 2fveq3 ( 𝑝 = 𝑄 → ( 𝑀 ‘ ( 𝑝 ) ) = ( 𝑀 ‘ ( 𝑄 ) ) )
9 8 iinxsng ( 𝑄𝐴 𝑝 ∈ { 𝑄 } ( 𝑀 ‘ ( 𝑝 ) ) = ( 𝑀 ‘ ( 𝑄 ) ) )
10 9 adantl ( ( 𝐾 ∈ OL ∧ 𝑄𝐴 ) → 𝑝 ∈ { 𝑄 } ( 𝑀 ‘ ( 𝑝 ) ) = ( 𝑀 ‘ ( 𝑄 ) ) )
11 10 ineq2d ( ( 𝐾 ∈ OL ∧ 𝑄𝐴 ) → ( 𝐴 𝑝 ∈ { 𝑄 } ( 𝑀 ‘ ( 𝑝 ) ) ) = ( 𝐴 ∩ ( 𝑀 ‘ ( 𝑄 ) ) ) )
12 olop ( 𝐾 ∈ OL → 𝐾 ∈ OP )
13 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
14 13 2 atbase ( 𝑄𝐴𝑄 ∈ ( Base ‘ 𝐾 ) )
15 13 1 opoccl ( ( 𝐾 ∈ OP ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑄 ) ∈ ( Base ‘ 𝐾 ) )
16 12 14 15 syl2an ( ( 𝐾 ∈ OL ∧ 𝑄𝐴 ) → ( 𝑄 ) ∈ ( Base ‘ 𝐾 ) )
17 13 2 3 pmapssat ( ( 𝐾 ∈ OL ∧ ( 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝑀 ‘ ( 𝑄 ) ) ⊆ 𝐴 )
18 16 17 syldan ( ( 𝐾 ∈ OL ∧ 𝑄𝐴 ) → ( 𝑀 ‘ ( 𝑄 ) ) ⊆ 𝐴 )
19 sseqin2 ( ( 𝑀 ‘ ( 𝑄 ) ) ⊆ 𝐴 ↔ ( 𝐴 ∩ ( 𝑀 ‘ ( 𝑄 ) ) ) = ( 𝑀 ‘ ( 𝑄 ) ) )
20 18 19 sylib ( ( 𝐾 ∈ OL ∧ 𝑄𝐴 ) → ( 𝐴 ∩ ( 𝑀 ‘ ( 𝑄 ) ) ) = ( 𝑀 ‘ ( 𝑄 ) ) )
21 7 11 20 3eqtrd ( ( 𝐾 ∈ OL ∧ 𝑄𝐴 ) → ( 𝑃 ‘ { 𝑄 } ) = ( 𝑀 ‘ ( 𝑄 ) ) )