Metamath Proof Explorer


Theorem polcon2N

Description: Contraposition law for polarity. (Contributed by NM, 23-Mar-2012) (New usage is discouraged.)

Ref Expression
Hypotheses 2polss.a 𝐴 = ( Atoms ‘ 𝐾 )
2polss.p = ( ⊥𝑃𝐾 )
Assertion polcon2N ( ( 𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌 ) ) → 𝑌 ⊆ ( 𝑋 ) )

Proof

Step Hyp Ref Expression
1 2polss.a 𝐴 = ( Atoms ‘ 𝐾 )
2 2polss.p = ( ⊥𝑃𝐾 )
3 1 2 2polssN ( ( 𝐾 ∈ HL ∧ 𝑌𝐴 ) → 𝑌 ⊆ ( ‘ ( 𝑌 ) ) )
4 3 3adant3 ( ( 𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌 ) ) → 𝑌 ⊆ ( ‘ ( 𝑌 ) ) )
5 1 2 polssatN ( ( 𝐾 ∈ HL ∧ 𝑌𝐴 ) → ( 𝑌 ) ⊆ 𝐴 )
6 5 3adant3 ( ( 𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌 ) ) → ( 𝑌 ) ⊆ 𝐴 )
7 1 2 polcon3N ( ( 𝐾 ∈ HL ∧ ( 𝑌 ) ⊆ 𝐴𝑋 ⊆ ( 𝑌 ) ) → ( ‘ ( 𝑌 ) ) ⊆ ( 𝑋 ) )
8 6 7 syld3an2 ( ( 𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌 ) ) → ( ‘ ( 𝑌 ) ) ⊆ ( 𝑋 ) )
9 4 8 sstrd ( ( 𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌 ) ) → 𝑌 ⊆ ( 𝑋 ) )