Step |
Hyp |
Ref |
Expression |
1 |
|
2polss.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
2 |
|
2polss.p |
⊢ ⊥ = ( ⊥𝑃 ‘ 𝐾 ) |
3 |
1 2
|
2polssN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ) → 𝑌 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) |
4 |
3
|
3adant3 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ) → 𝑌 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) |
5 |
1 2
|
polssatN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ) → ( ⊥ ‘ 𝑌 ) ⊆ 𝐴 ) |
6 |
5
|
3adant3 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ) → ( ⊥ ‘ 𝑌 ) ⊆ 𝐴 ) |
7 |
1 2
|
polcon3N |
⊢ ( ( 𝐾 ∈ HL ∧ ( ⊥ ‘ 𝑌 ) ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ) → ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ⊆ ( ⊥ ‘ 𝑋 ) ) |
8 |
6 7
|
syld3an2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ) → ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ⊆ ( ⊥ ‘ 𝑋 ) ) |
9 |
4 8
|
sstrd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ) → 𝑌 ⊆ ( ⊥ ‘ 𝑋 ) ) |