Step |
Hyp |
Ref |
Expression |
1 |
|
2polss.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
2 |
|
2polss.p |
⊢ ⊥ = ( ⊥𝑃 ‘ 𝐾 ) |
3 |
|
simpl1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ) → 𝐾 ∈ HL ) |
4 |
|
simpl3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ) → 𝑌 ⊆ 𝐴 ) |
5 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ) → 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ) |
6 |
1 2
|
polcon2N |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ) → 𝑌 ⊆ ( ⊥ ‘ 𝑋 ) ) |
7 |
3 4 5 6
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ) → 𝑌 ⊆ ( ⊥ ‘ 𝑋 ) ) |
8 |
|
simpl1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑌 ⊆ ( ⊥ ‘ 𝑋 ) ) → 𝐾 ∈ HL ) |
9 |
|
simpl2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑌 ⊆ ( ⊥ ‘ 𝑋 ) ) → 𝑋 ⊆ 𝐴 ) |
10 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑌 ⊆ ( ⊥ ‘ 𝑋 ) ) → 𝑌 ⊆ ( ⊥ ‘ 𝑋 ) ) |
11 |
1 2
|
polcon2N |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ ( ⊥ ‘ 𝑋 ) ) → 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ) |
12 |
8 9 10 11
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑌 ⊆ ( ⊥ ‘ 𝑋 ) ) → 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ) |
13 |
7 12
|
impbida |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ↔ 𝑌 ⊆ ( ⊥ ‘ 𝑋 ) ) ) |