| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							paddun.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							paddun.p | 
							⊢  +   =  ( +𝑃 ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							paddun.o | 
							⊢  ⊥   =  ( ⊥𝑃 ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								1 2 3
							 | 
							paddunN | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  (  ⊥  ‘ ( 𝑆  +  𝑇 ) )  =  (  ⊥  ‘ ( 𝑆  ∪  𝑇 ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							simp1 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  𝐾  ∈  HL )  | 
						
						
							| 6 | 
							
								
							 | 
							unss | 
							⊢ ( ( 𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  ↔  ( 𝑆  ∪  𝑇 )  ⊆  𝐴 )  | 
						
						
							| 7 | 
							
								6
							 | 
							biimpi | 
							⊢ ( ( 𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  ( 𝑆  ∪  𝑇 )  ⊆  𝐴 )  | 
						
						
							| 8 | 
							
								7
							 | 
							3adant1 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  ( 𝑆  ∪  𝑇 )  ⊆  𝐴 )  | 
						
						
							| 9 | 
							
								
							 | 
							eqid | 
							⊢ ( lub ‘ 𝐾 )  =  ( lub ‘ 𝐾 )  | 
						
						
							| 10 | 
							
								
							 | 
							eqid | 
							⊢ ( oc ‘ 𝐾 )  =  ( oc ‘ 𝐾 )  | 
						
						
							| 11 | 
							
								
							 | 
							eqid | 
							⊢ ( pmap ‘ 𝐾 )  =  ( pmap ‘ 𝐾 )  | 
						
						
							| 12 | 
							
								9 10 1 11 3
							 | 
							polval2N | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑆  ∪  𝑇 )  ⊆  𝐴 )  →  (  ⊥  ‘ ( 𝑆  ∪  𝑇 ) )  =  ( ( pmap ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆  ∪  𝑇 ) ) ) ) )  | 
						
						
							| 13 | 
							
								5 8 12
							 | 
							syl2anc | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  (  ⊥  ‘ ( 𝑆  ∪  𝑇 ) )  =  ( ( pmap ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆  ∪  𝑇 ) ) ) ) )  | 
						
						
							| 14 | 
							
								
							 | 
							hlop | 
							⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  OP )  | 
						
						
							| 15 | 
							
								14
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  𝐾  ∈  OP )  | 
						
						
							| 16 | 
							
								
							 | 
							hlclat | 
							⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  CLat )  | 
						
						
							| 17 | 
							
								16
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  𝐾  ∈  CLat )  | 
						
						
							| 18 | 
							
								
							 | 
							simp2 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  𝑆  ⊆  𝐴 )  | 
						
						
							| 19 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 )  | 
						
						
							| 20 | 
							
								19 1
							 | 
							atssbase | 
							⊢ 𝐴  ⊆  ( Base ‘ 𝐾 )  | 
						
						
							| 21 | 
							
								18 20
							 | 
							sstrdi | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  𝑆  ⊆  ( Base ‘ 𝐾 ) )  | 
						
						
							| 22 | 
							
								19 9
							 | 
							clatlubcl | 
							⊢ ( ( 𝐾  ∈  CLat  ∧  𝑆  ⊆  ( Base ‘ 𝐾 ) )  →  ( ( lub ‘ 𝐾 ) ‘ 𝑆 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 23 | 
							
								17 21 22
							 | 
							syl2anc | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  ( ( lub ‘ 𝐾 ) ‘ 𝑆 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 24 | 
							
								19 10
							 | 
							opoccl | 
							⊢ ( ( 𝐾  ∈  OP  ∧  ( ( lub ‘ 𝐾 ) ‘ 𝑆 )  ∈  ( Base ‘ 𝐾 ) )  →  ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 25 | 
							
								15 23 24
							 | 
							syl2anc | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 26 | 
							
								
							 | 
							simp3 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  𝑇  ⊆  𝐴 )  | 
						
						
							| 27 | 
							
								26 20
							 | 
							sstrdi | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  𝑇  ⊆  ( Base ‘ 𝐾 ) )  | 
						
						
							| 28 | 
							
								19 9
							 | 
							clatlubcl | 
							⊢ ( ( 𝐾  ∈  CLat  ∧  𝑇  ⊆  ( Base ‘ 𝐾 ) )  →  ( ( lub ‘ 𝐾 ) ‘ 𝑇 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 29 | 
							
								17 27 28
							 | 
							syl2anc | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  ( ( lub ‘ 𝐾 ) ‘ 𝑇 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 30 | 
							
								19 10
							 | 
							opoccl | 
							⊢ ( ( 𝐾  ∈  OP  ∧  ( ( lub ‘ 𝐾 ) ‘ 𝑇 )  ∈  ( Base ‘ 𝐾 ) )  →  ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 31 | 
							
								15 29 30
							 | 
							syl2anc | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 32 | 
							
								
							 | 
							eqid | 
							⊢ ( meet ‘ 𝐾 )  =  ( meet ‘ 𝐾 )  | 
						
						
							| 33 | 
							
								19 32 1 11
							 | 
							pmapmeet | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) )  ∈  ( Base ‘ 𝐾 )  ∧  ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) )  ∈  ( Base ‘ 𝐾 ) )  →  ( ( pmap ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ) ) )  =  ( ( ( pmap ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ) )  ∩  ( ( pmap ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ) ) ) )  | 
						
						
							| 34 | 
							
								5 25 31 33
							 | 
							syl3anc | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  ( ( pmap ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ) ) )  =  ( ( ( pmap ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ) )  ∩  ( ( pmap ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ) ) ) )  | 
						
						
							| 35 | 
							
								
							 | 
							eqid | 
							⊢ ( join ‘ 𝐾 )  =  ( join ‘ 𝐾 )  | 
						
						
							| 36 | 
							
								19 35 9
							 | 
							lubun | 
							⊢ ( ( 𝐾  ∈  CLat  ∧  𝑆  ⊆  ( Base ‘ 𝐾 )  ∧  𝑇  ⊆  ( Base ‘ 𝐾 ) )  →  ( ( lub ‘ 𝐾 ) ‘ ( 𝑆  ∪  𝑇 ) )  =  ( ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ( join ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ) )  | 
						
						
							| 37 | 
							
								17 21 27 36
							 | 
							syl3anc | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  ( ( lub ‘ 𝐾 ) ‘ ( 𝑆  ∪  𝑇 ) )  =  ( ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ( join ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							fveq2d | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆  ∪  𝑇 ) ) )  =  ( ( oc ‘ 𝐾 ) ‘ ( ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ( join ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ) ) )  | 
						
						
							| 39 | 
							
								
							 | 
							hlol | 
							⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  OL )  | 
						
						
							| 40 | 
							
								39
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  𝐾  ∈  OL )  | 
						
						
							| 41 | 
							
								19 35 32 10
							 | 
							oldmj1 | 
							⊢ ( ( 𝐾  ∈  OL  ∧  ( ( lub ‘ 𝐾 ) ‘ 𝑆 )  ∈  ( Base ‘ 𝐾 )  ∧  ( ( lub ‘ 𝐾 ) ‘ 𝑇 )  ∈  ( Base ‘ 𝐾 ) )  →  ( ( oc ‘ 𝐾 ) ‘ ( ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ( join ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ) )  =  ( ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ) ) )  | 
						
						
							| 42 | 
							
								40 23 29 41
							 | 
							syl3anc | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  ( ( oc ‘ 𝐾 ) ‘ ( ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ( join ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ) )  =  ( ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ) ) )  | 
						
						
							| 43 | 
							
								38 42
							 | 
							eqtrd | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆  ∪  𝑇 ) ) )  =  ( ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ) ) )  | 
						
						
							| 44 | 
							
								43
							 | 
							fveq2d | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  ( ( pmap ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆  ∪  𝑇 ) ) ) )  =  ( ( pmap ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ) ) ) )  | 
						
						
							| 45 | 
							
								9 10 1 11 3
							 | 
							polval2N | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴 )  →  (  ⊥  ‘ 𝑆 )  =  ( ( pmap ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ) ) )  | 
						
						
							| 46 | 
							
								45
							 | 
							3adant3 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  (  ⊥  ‘ 𝑆 )  =  ( ( pmap ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ) ) )  | 
						
						
							| 47 | 
							
								9 10 1 11 3
							 | 
							polval2N | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑇  ⊆  𝐴 )  →  (  ⊥  ‘ 𝑇 )  =  ( ( pmap ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ) ) )  | 
						
						
							| 48 | 
							
								47
							 | 
							3adant2 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  (  ⊥  ‘ 𝑇 )  =  ( ( pmap ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ) ) )  | 
						
						
							| 49 | 
							
								46 48
							 | 
							ineq12d | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  ( (  ⊥  ‘ 𝑆 )  ∩  (  ⊥  ‘ 𝑇 ) )  =  ( ( ( pmap ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ) )  ∩  ( ( pmap ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ) ) ) )  | 
						
						
							| 50 | 
							
								34 44 49
							 | 
							3eqtr4d | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  ( ( pmap ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆  ∪  𝑇 ) ) ) )  =  ( (  ⊥  ‘ 𝑆 )  ∩  (  ⊥  ‘ 𝑇 ) ) )  | 
						
						
							| 51 | 
							
								4 13 50
							 | 
							3eqtrd | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  (  ⊥  ‘ ( 𝑆  +  𝑇 ) )  =  ( (  ⊥  ‘ 𝑆 )  ∩  (  ⊥  ‘ 𝑇 ) ) )  |