Description: Express "less than or equals" for general strict orders. (Contributed by Stefan O'Rear, 17-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | poleloe | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 ( 𝑅 ∪ I ) 𝐵 ↔ ( 𝐴 𝑅 𝐵 ∨ 𝐴 = 𝐵 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brun | ⊢ ( 𝐴 ( 𝑅 ∪ I ) 𝐵 ↔ ( 𝐴 𝑅 𝐵 ∨ 𝐴 I 𝐵 ) ) | |
2 | ideqg | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 I 𝐵 ↔ 𝐴 = 𝐵 ) ) | |
3 | 2 | orbi2d | ⊢ ( 𝐵 ∈ 𝑉 → ( ( 𝐴 𝑅 𝐵 ∨ 𝐴 I 𝐵 ) ↔ ( 𝐴 𝑅 𝐵 ∨ 𝐴 = 𝐵 ) ) ) |
4 | 1 3 | syl5bb | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 ( 𝑅 ∪ I ) 𝐵 ↔ ( 𝐴 𝑅 𝐵 ∨ 𝐴 = 𝐵 ) ) ) |