Metamath Proof Explorer


Theorem poleloe

Description: Express "less than or equals" for general strict orders. (Contributed by Stefan O'Rear, 17-Jan-2015)

Ref Expression
Assertion poleloe ( 𝐵𝑉 → ( 𝐴 ( 𝑅 ∪ I ) 𝐵 ↔ ( 𝐴 𝑅 𝐵𝐴 = 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 brun ( 𝐴 ( 𝑅 ∪ I ) 𝐵 ↔ ( 𝐴 𝑅 𝐵𝐴 I 𝐵 ) )
2 ideqg ( 𝐵𝑉 → ( 𝐴 I 𝐵𝐴 = 𝐵 ) )
3 2 orbi2d ( 𝐵𝑉 → ( ( 𝐴 𝑅 𝐵𝐴 I 𝐵 ) ↔ ( 𝐴 𝑅 𝐵𝐴 = 𝐵 ) ) )
4 1 3 syl5bb ( 𝐵𝑉 → ( 𝐴 ( 𝑅 ∪ I ) 𝐵 ↔ ( 𝐴 𝑅 𝐵𝐴 = 𝐵 ) ) )