Step |
Hyp |
Ref |
Expression |
1 |
|
polfval.o |
⊢ ⊥ = ( oc ‘ 𝐾 ) |
2 |
|
polfval.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
3 |
|
polfval.m |
⊢ 𝑀 = ( pmap ‘ 𝐾 ) |
4 |
|
polfval.p |
⊢ 𝑃 = ( ⊥𝑃 ‘ 𝐾 ) |
5 |
|
elex |
⊢ ( 𝐾 ∈ 𝐵 → 𝐾 ∈ V ) |
6 |
|
fveq2 |
⊢ ( ℎ = 𝐾 → ( Atoms ‘ ℎ ) = ( Atoms ‘ 𝐾 ) ) |
7 |
6 2
|
eqtr4di |
⊢ ( ℎ = 𝐾 → ( Atoms ‘ ℎ ) = 𝐴 ) |
8 |
7
|
pweqd |
⊢ ( ℎ = 𝐾 → 𝒫 ( Atoms ‘ ℎ ) = 𝒫 𝐴 ) |
9 |
|
fveq2 |
⊢ ( ℎ = 𝐾 → ( pmap ‘ ℎ ) = ( pmap ‘ 𝐾 ) ) |
10 |
9 3
|
eqtr4di |
⊢ ( ℎ = 𝐾 → ( pmap ‘ ℎ ) = 𝑀 ) |
11 |
|
fveq2 |
⊢ ( ℎ = 𝐾 → ( oc ‘ ℎ ) = ( oc ‘ 𝐾 ) ) |
12 |
11 1
|
eqtr4di |
⊢ ( ℎ = 𝐾 → ( oc ‘ ℎ ) = ⊥ ) |
13 |
12
|
fveq1d |
⊢ ( ℎ = 𝐾 → ( ( oc ‘ ℎ ) ‘ 𝑝 ) = ( ⊥ ‘ 𝑝 ) ) |
14 |
10 13
|
fveq12d |
⊢ ( ℎ = 𝐾 → ( ( pmap ‘ ℎ ) ‘ ( ( oc ‘ ℎ ) ‘ 𝑝 ) ) = ( 𝑀 ‘ ( ⊥ ‘ 𝑝 ) ) ) |
15 |
14
|
adantr |
⊢ ( ( ℎ = 𝐾 ∧ 𝑝 ∈ 𝑚 ) → ( ( pmap ‘ ℎ ) ‘ ( ( oc ‘ ℎ ) ‘ 𝑝 ) ) = ( 𝑀 ‘ ( ⊥ ‘ 𝑝 ) ) ) |
16 |
15
|
iineq2dv |
⊢ ( ℎ = 𝐾 → ∩ 𝑝 ∈ 𝑚 ( ( pmap ‘ ℎ ) ‘ ( ( oc ‘ ℎ ) ‘ 𝑝 ) ) = ∩ 𝑝 ∈ 𝑚 ( 𝑀 ‘ ( ⊥ ‘ 𝑝 ) ) ) |
17 |
7 16
|
ineq12d |
⊢ ( ℎ = 𝐾 → ( ( Atoms ‘ ℎ ) ∩ ∩ 𝑝 ∈ 𝑚 ( ( pmap ‘ ℎ ) ‘ ( ( oc ‘ ℎ ) ‘ 𝑝 ) ) ) = ( 𝐴 ∩ ∩ 𝑝 ∈ 𝑚 ( 𝑀 ‘ ( ⊥ ‘ 𝑝 ) ) ) ) |
18 |
8 17
|
mpteq12dv |
⊢ ( ℎ = 𝐾 → ( 𝑚 ∈ 𝒫 ( Atoms ‘ ℎ ) ↦ ( ( Atoms ‘ ℎ ) ∩ ∩ 𝑝 ∈ 𝑚 ( ( pmap ‘ ℎ ) ‘ ( ( oc ‘ ℎ ) ‘ 𝑝 ) ) ) ) = ( 𝑚 ∈ 𝒫 𝐴 ↦ ( 𝐴 ∩ ∩ 𝑝 ∈ 𝑚 ( 𝑀 ‘ ( ⊥ ‘ 𝑝 ) ) ) ) ) |
19 |
|
df-polarityN |
⊢ ⊥𝑃 = ( ℎ ∈ V ↦ ( 𝑚 ∈ 𝒫 ( Atoms ‘ ℎ ) ↦ ( ( Atoms ‘ ℎ ) ∩ ∩ 𝑝 ∈ 𝑚 ( ( pmap ‘ ℎ ) ‘ ( ( oc ‘ ℎ ) ‘ 𝑝 ) ) ) ) ) |
20 |
2
|
fvexi |
⊢ 𝐴 ∈ V |
21 |
20
|
pwex |
⊢ 𝒫 𝐴 ∈ V |
22 |
21
|
mptex |
⊢ ( 𝑚 ∈ 𝒫 𝐴 ↦ ( 𝐴 ∩ ∩ 𝑝 ∈ 𝑚 ( 𝑀 ‘ ( ⊥ ‘ 𝑝 ) ) ) ) ∈ V |
23 |
18 19 22
|
fvmpt |
⊢ ( 𝐾 ∈ V → ( ⊥𝑃 ‘ 𝐾 ) = ( 𝑚 ∈ 𝒫 𝐴 ↦ ( 𝐴 ∩ ∩ 𝑝 ∈ 𝑚 ( 𝑀 ‘ ( ⊥ ‘ 𝑝 ) ) ) ) ) |
24 |
4 23
|
syl5eq |
⊢ ( 𝐾 ∈ V → 𝑃 = ( 𝑚 ∈ 𝒫 𝐴 ↦ ( 𝐴 ∩ ∩ 𝑝 ∈ 𝑚 ( 𝑀 ‘ ( ⊥ ‘ 𝑝 ) ) ) ) ) |
25 |
5 24
|
syl |
⊢ ( 𝐾 ∈ 𝐵 → 𝑃 = ( 𝑚 ∈ 𝒫 𝐴 ↦ ( 𝐴 ∩ ∩ 𝑝 ∈ 𝑚 ( 𝑀 ‘ ( ⊥ ‘ 𝑝 ) ) ) ) ) |