Step |
Hyp |
Ref |
Expression |
1 |
|
polid2.1 |
⊢ 𝐴 ∈ ℋ |
2 |
|
polid2.2 |
⊢ 𝐵 ∈ ℋ |
3 |
|
polid2.3 |
⊢ 𝐶 ∈ ℋ |
4 |
|
polid2.4 |
⊢ 𝐷 ∈ ℋ |
5 |
|
4cn |
⊢ 4 ∈ ℂ |
6 |
1 2
|
hicli |
⊢ ( 𝐴 ·ih 𝐵 ) ∈ ℂ |
7 |
|
4ne0 |
⊢ 4 ≠ 0 |
8 |
|
2cn |
⊢ 2 ∈ ℂ |
9 |
3 4
|
hicli |
⊢ ( 𝐶 ·ih 𝐷 ) ∈ ℂ |
10 |
6 9
|
addcli |
⊢ ( ( 𝐴 ·ih 𝐵 ) + ( 𝐶 ·ih 𝐷 ) ) ∈ ℂ |
11 |
6 9
|
subcli |
⊢ ( ( 𝐴 ·ih 𝐵 ) − ( 𝐶 ·ih 𝐷 ) ) ∈ ℂ |
12 |
8 10 11
|
adddii |
⊢ ( 2 · ( ( ( 𝐴 ·ih 𝐵 ) + ( 𝐶 ·ih 𝐷 ) ) + ( ( 𝐴 ·ih 𝐵 ) − ( 𝐶 ·ih 𝐷 ) ) ) ) = ( ( 2 · ( ( 𝐴 ·ih 𝐵 ) + ( 𝐶 ·ih 𝐷 ) ) ) + ( 2 · ( ( 𝐴 ·ih 𝐵 ) − ( 𝐶 ·ih 𝐷 ) ) ) ) |
13 |
|
ppncan |
⊢ ( ( ( 𝐴 ·ih 𝐵 ) ∈ ℂ ∧ ( 𝐶 ·ih 𝐷 ) ∈ ℂ ∧ ( 𝐴 ·ih 𝐵 ) ∈ ℂ ) → ( ( ( 𝐴 ·ih 𝐵 ) + ( 𝐶 ·ih 𝐷 ) ) + ( ( 𝐴 ·ih 𝐵 ) − ( 𝐶 ·ih 𝐷 ) ) ) = ( ( 𝐴 ·ih 𝐵 ) + ( 𝐴 ·ih 𝐵 ) ) ) |
14 |
6 9 6 13
|
mp3an |
⊢ ( ( ( 𝐴 ·ih 𝐵 ) + ( 𝐶 ·ih 𝐷 ) ) + ( ( 𝐴 ·ih 𝐵 ) − ( 𝐶 ·ih 𝐷 ) ) ) = ( ( 𝐴 ·ih 𝐵 ) + ( 𝐴 ·ih 𝐵 ) ) |
15 |
6
|
2timesi |
⊢ ( 2 · ( 𝐴 ·ih 𝐵 ) ) = ( ( 𝐴 ·ih 𝐵 ) + ( 𝐴 ·ih 𝐵 ) ) |
16 |
14 15
|
eqtr4i |
⊢ ( ( ( 𝐴 ·ih 𝐵 ) + ( 𝐶 ·ih 𝐷 ) ) + ( ( 𝐴 ·ih 𝐵 ) − ( 𝐶 ·ih 𝐷 ) ) ) = ( 2 · ( 𝐴 ·ih 𝐵 ) ) |
17 |
16
|
oveq2i |
⊢ ( 2 · ( ( ( 𝐴 ·ih 𝐵 ) + ( 𝐶 ·ih 𝐷 ) ) + ( ( 𝐴 ·ih 𝐵 ) − ( 𝐶 ·ih 𝐷 ) ) ) ) = ( 2 · ( 2 · ( 𝐴 ·ih 𝐵 ) ) ) |
18 |
8 8 6
|
mulassi |
⊢ ( ( 2 · 2 ) · ( 𝐴 ·ih 𝐵 ) ) = ( 2 · ( 2 · ( 𝐴 ·ih 𝐵 ) ) ) |
19 |
|
2t2e4 |
⊢ ( 2 · 2 ) = 4 |
20 |
19
|
oveq1i |
⊢ ( ( 2 · 2 ) · ( 𝐴 ·ih 𝐵 ) ) = ( 4 · ( 𝐴 ·ih 𝐵 ) ) |
21 |
17 18 20
|
3eqtr2ri |
⊢ ( 4 · ( 𝐴 ·ih 𝐵 ) ) = ( 2 · ( ( ( 𝐴 ·ih 𝐵 ) + ( 𝐶 ·ih 𝐷 ) ) + ( ( 𝐴 ·ih 𝐵 ) − ( 𝐶 ·ih 𝐷 ) ) ) ) |
22 |
1 4
|
hicli |
⊢ ( 𝐴 ·ih 𝐷 ) ∈ ℂ |
23 |
3 2
|
hicli |
⊢ ( 𝐶 ·ih 𝐵 ) ∈ ℂ |
24 |
22 23
|
addcli |
⊢ ( ( 𝐴 ·ih 𝐷 ) + ( 𝐶 ·ih 𝐵 ) ) ∈ ℂ |
25 |
24 10 10
|
pnncani |
⊢ ( ( ( ( 𝐴 ·ih 𝐷 ) + ( 𝐶 ·ih 𝐵 ) ) + ( ( 𝐴 ·ih 𝐵 ) + ( 𝐶 ·ih 𝐷 ) ) ) − ( ( ( 𝐴 ·ih 𝐷 ) + ( 𝐶 ·ih 𝐵 ) ) − ( ( 𝐴 ·ih 𝐵 ) + ( 𝐶 ·ih 𝐷 ) ) ) ) = ( ( ( 𝐴 ·ih 𝐵 ) + ( 𝐶 ·ih 𝐷 ) ) + ( ( 𝐴 ·ih 𝐵 ) + ( 𝐶 ·ih 𝐷 ) ) ) |
26 |
1 3 4 2
|
normlem8 |
⊢ ( ( 𝐴 +ℎ 𝐶 ) ·ih ( 𝐷 +ℎ 𝐵 ) ) = ( ( ( 𝐴 ·ih 𝐷 ) + ( 𝐶 ·ih 𝐵 ) ) + ( ( 𝐴 ·ih 𝐵 ) + ( 𝐶 ·ih 𝐷 ) ) ) |
27 |
1 3 4 2
|
normlem9 |
⊢ ( ( 𝐴 −ℎ 𝐶 ) ·ih ( 𝐷 −ℎ 𝐵 ) ) = ( ( ( 𝐴 ·ih 𝐷 ) + ( 𝐶 ·ih 𝐵 ) ) − ( ( 𝐴 ·ih 𝐵 ) + ( 𝐶 ·ih 𝐷 ) ) ) |
28 |
26 27
|
oveq12i |
⊢ ( ( ( 𝐴 +ℎ 𝐶 ) ·ih ( 𝐷 +ℎ 𝐵 ) ) − ( ( 𝐴 −ℎ 𝐶 ) ·ih ( 𝐷 −ℎ 𝐵 ) ) ) = ( ( ( ( 𝐴 ·ih 𝐷 ) + ( 𝐶 ·ih 𝐵 ) ) + ( ( 𝐴 ·ih 𝐵 ) + ( 𝐶 ·ih 𝐷 ) ) ) − ( ( ( 𝐴 ·ih 𝐷 ) + ( 𝐶 ·ih 𝐵 ) ) − ( ( 𝐴 ·ih 𝐵 ) + ( 𝐶 ·ih 𝐷 ) ) ) ) |
29 |
10
|
2timesi |
⊢ ( 2 · ( ( 𝐴 ·ih 𝐵 ) + ( 𝐶 ·ih 𝐷 ) ) ) = ( ( ( 𝐴 ·ih 𝐵 ) + ( 𝐶 ·ih 𝐷 ) ) + ( ( 𝐴 ·ih 𝐵 ) + ( 𝐶 ·ih 𝐷 ) ) ) |
30 |
25 28 29
|
3eqtr4i |
⊢ ( ( ( 𝐴 +ℎ 𝐶 ) ·ih ( 𝐷 +ℎ 𝐵 ) ) − ( ( 𝐴 −ℎ 𝐶 ) ·ih ( 𝐷 −ℎ 𝐵 ) ) ) = ( 2 · ( ( 𝐴 ·ih 𝐵 ) + ( 𝐶 ·ih 𝐷 ) ) ) |
31 |
|
ax-icn |
⊢ i ∈ ℂ |
32 |
31 3
|
hvmulcli |
⊢ ( i ·ℎ 𝐶 ) ∈ ℋ |
33 |
31 2
|
hvmulcli |
⊢ ( i ·ℎ 𝐵 ) ∈ ℋ |
34 |
1 32 4 33
|
normlem8 |
⊢ ( ( 𝐴 +ℎ ( i ·ℎ 𝐶 ) ) ·ih ( 𝐷 +ℎ ( i ·ℎ 𝐵 ) ) ) = ( ( ( 𝐴 ·ih 𝐷 ) + ( ( i ·ℎ 𝐶 ) ·ih ( i ·ℎ 𝐵 ) ) ) + ( ( 𝐴 ·ih ( i ·ℎ 𝐵 ) ) + ( ( i ·ℎ 𝐶 ) ·ih 𝐷 ) ) ) |
35 |
1 32 4 33
|
normlem9 |
⊢ ( ( 𝐴 −ℎ ( i ·ℎ 𝐶 ) ) ·ih ( 𝐷 −ℎ ( i ·ℎ 𝐵 ) ) ) = ( ( ( 𝐴 ·ih 𝐷 ) + ( ( i ·ℎ 𝐶 ) ·ih ( i ·ℎ 𝐵 ) ) ) − ( ( 𝐴 ·ih ( i ·ℎ 𝐵 ) ) + ( ( i ·ℎ 𝐶 ) ·ih 𝐷 ) ) ) |
36 |
34 35
|
oveq12i |
⊢ ( ( ( 𝐴 +ℎ ( i ·ℎ 𝐶 ) ) ·ih ( 𝐷 +ℎ ( i ·ℎ 𝐵 ) ) ) − ( ( 𝐴 −ℎ ( i ·ℎ 𝐶 ) ) ·ih ( 𝐷 −ℎ ( i ·ℎ 𝐵 ) ) ) ) = ( ( ( ( 𝐴 ·ih 𝐷 ) + ( ( i ·ℎ 𝐶 ) ·ih ( i ·ℎ 𝐵 ) ) ) + ( ( 𝐴 ·ih ( i ·ℎ 𝐵 ) ) + ( ( i ·ℎ 𝐶 ) ·ih 𝐷 ) ) ) − ( ( ( 𝐴 ·ih 𝐷 ) + ( ( i ·ℎ 𝐶 ) ·ih ( i ·ℎ 𝐵 ) ) ) − ( ( 𝐴 ·ih ( i ·ℎ 𝐵 ) ) + ( ( i ·ℎ 𝐶 ) ·ih 𝐷 ) ) ) ) |
37 |
32 33
|
hicli |
⊢ ( ( i ·ℎ 𝐶 ) ·ih ( i ·ℎ 𝐵 ) ) ∈ ℂ |
38 |
22 37
|
addcli |
⊢ ( ( 𝐴 ·ih 𝐷 ) + ( ( i ·ℎ 𝐶 ) ·ih ( i ·ℎ 𝐵 ) ) ) ∈ ℂ |
39 |
1 33
|
hicli |
⊢ ( 𝐴 ·ih ( i ·ℎ 𝐵 ) ) ∈ ℂ |
40 |
32 4
|
hicli |
⊢ ( ( i ·ℎ 𝐶 ) ·ih 𝐷 ) ∈ ℂ |
41 |
39 40
|
addcli |
⊢ ( ( 𝐴 ·ih ( i ·ℎ 𝐵 ) ) + ( ( i ·ℎ 𝐶 ) ·ih 𝐷 ) ) ∈ ℂ |
42 |
38 41 41
|
pnncani |
⊢ ( ( ( ( 𝐴 ·ih 𝐷 ) + ( ( i ·ℎ 𝐶 ) ·ih ( i ·ℎ 𝐵 ) ) ) + ( ( 𝐴 ·ih ( i ·ℎ 𝐵 ) ) + ( ( i ·ℎ 𝐶 ) ·ih 𝐷 ) ) ) − ( ( ( 𝐴 ·ih 𝐷 ) + ( ( i ·ℎ 𝐶 ) ·ih ( i ·ℎ 𝐵 ) ) ) − ( ( 𝐴 ·ih ( i ·ℎ 𝐵 ) ) + ( ( i ·ℎ 𝐶 ) ·ih 𝐷 ) ) ) ) = ( ( ( 𝐴 ·ih ( i ·ℎ 𝐵 ) ) + ( ( i ·ℎ 𝐶 ) ·ih 𝐷 ) ) + ( ( 𝐴 ·ih ( i ·ℎ 𝐵 ) ) + ( ( i ·ℎ 𝐶 ) ·ih 𝐷 ) ) ) |
43 |
41
|
2timesi |
⊢ ( 2 · ( ( 𝐴 ·ih ( i ·ℎ 𝐵 ) ) + ( ( i ·ℎ 𝐶 ) ·ih 𝐷 ) ) ) = ( ( ( 𝐴 ·ih ( i ·ℎ 𝐵 ) ) + ( ( i ·ℎ 𝐶 ) ·ih 𝐷 ) ) + ( ( 𝐴 ·ih ( i ·ℎ 𝐵 ) ) + ( ( i ·ℎ 𝐶 ) ·ih 𝐷 ) ) ) |
44 |
|
his5 |
⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ·ih ( i ·ℎ 𝐵 ) ) = ( ( ∗ ‘ i ) · ( 𝐴 ·ih 𝐵 ) ) ) |
45 |
31 1 2 44
|
mp3an |
⊢ ( 𝐴 ·ih ( i ·ℎ 𝐵 ) ) = ( ( ∗ ‘ i ) · ( 𝐴 ·ih 𝐵 ) ) |
46 |
|
cji |
⊢ ( ∗ ‘ i ) = - i |
47 |
46
|
oveq1i |
⊢ ( ( ∗ ‘ i ) · ( 𝐴 ·ih 𝐵 ) ) = ( - i · ( 𝐴 ·ih 𝐵 ) ) |
48 |
45 47
|
eqtri |
⊢ ( 𝐴 ·ih ( i ·ℎ 𝐵 ) ) = ( - i · ( 𝐴 ·ih 𝐵 ) ) |
49 |
|
ax-his3 |
⊢ ( ( i ∈ ℂ ∧ 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) → ( ( i ·ℎ 𝐶 ) ·ih 𝐷 ) = ( i · ( 𝐶 ·ih 𝐷 ) ) ) |
50 |
31 3 4 49
|
mp3an |
⊢ ( ( i ·ℎ 𝐶 ) ·ih 𝐷 ) = ( i · ( 𝐶 ·ih 𝐷 ) ) |
51 |
48 50
|
oveq12i |
⊢ ( ( 𝐴 ·ih ( i ·ℎ 𝐵 ) ) + ( ( i ·ℎ 𝐶 ) ·ih 𝐷 ) ) = ( ( - i · ( 𝐴 ·ih 𝐵 ) ) + ( i · ( 𝐶 ·ih 𝐷 ) ) ) |
52 |
51
|
oveq2i |
⊢ ( 2 · ( ( 𝐴 ·ih ( i ·ℎ 𝐵 ) ) + ( ( i ·ℎ 𝐶 ) ·ih 𝐷 ) ) ) = ( 2 · ( ( - i · ( 𝐴 ·ih 𝐵 ) ) + ( i · ( 𝐶 ·ih 𝐷 ) ) ) ) |
53 |
43 52
|
eqtr3i |
⊢ ( ( ( 𝐴 ·ih ( i ·ℎ 𝐵 ) ) + ( ( i ·ℎ 𝐶 ) ·ih 𝐷 ) ) + ( ( 𝐴 ·ih ( i ·ℎ 𝐵 ) ) + ( ( i ·ℎ 𝐶 ) ·ih 𝐷 ) ) ) = ( 2 · ( ( - i · ( 𝐴 ·ih 𝐵 ) ) + ( i · ( 𝐶 ·ih 𝐷 ) ) ) ) |
54 |
36 42 53
|
3eqtri |
⊢ ( ( ( 𝐴 +ℎ ( i ·ℎ 𝐶 ) ) ·ih ( 𝐷 +ℎ ( i ·ℎ 𝐵 ) ) ) − ( ( 𝐴 −ℎ ( i ·ℎ 𝐶 ) ) ·ih ( 𝐷 −ℎ ( i ·ℎ 𝐵 ) ) ) ) = ( 2 · ( ( - i · ( 𝐴 ·ih 𝐵 ) ) + ( i · ( 𝐶 ·ih 𝐷 ) ) ) ) |
55 |
54
|
oveq2i |
⊢ ( i · ( ( ( 𝐴 +ℎ ( i ·ℎ 𝐶 ) ) ·ih ( 𝐷 +ℎ ( i ·ℎ 𝐵 ) ) ) − ( ( 𝐴 −ℎ ( i ·ℎ 𝐶 ) ) ·ih ( 𝐷 −ℎ ( i ·ℎ 𝐵 ) ) ) ) ) = ( i · ( 2 · ( ( - i · ( 𝐴 ·ih 𝐵 ) ) + ( i · ( 𝐶 ·ih 𝐷 ) ) ) ) ) |
56 |
|
negicn |
⊢ - i ∈ ℂ |
57 |
56 6
|
mulcli |
⊢ ( - i · ( 𝐴 ·ih 𝐵 ) ) ∈ ℂ |
58 |
31 9
|
mulcli |
⊢ ( i · ( 𝐶 ·ih 𝐷 ) ) ∈ ℂ |
59 |
57 58
|
addcli |
⊢ ( ( - i · ( 𝐴 ·ih 𝐵 ) ) + ( i · ( 𝐶 ·ih 𝐷 ) ) ) ∈ ℂ |
60 |
8 31 59
|
mul12i |
⊢ ( 2 · ( i · ( ( - i · ( 𝐴 ·ih 𝐵 ) ) + ( i · ( 𝐶 ·ih 𝐷 ) ) ) ) ) = ( i · ( 2 · ( ( - i · ( 𝐴 ·ih 𝐵 ) ) + ( i · ( 𝐶 ·ih 𝐷 ) ) ) ) ) |
61 |
31 57 58
|
adddii |
⊢ ( i · ( ( - i · ( 𝐴 ·ih 𝐵 ) ) + ( i · ( 𝐶 ·ih 𝐷 ) ) ) ) = ( ( i · ( - i · ( 𝐴 ·ih 𝐵 ) ) ) + ( i · ( i · ( 𝐶 ·ih 𝐷 ) ) ) ) |
62 |
31 31
|
mulneg2i |
⊢ ( i · - i ) = - ( i · i ) |
63 |
|
ixi |
⊢ ( i · i ) = - 1 |
64 |
63
|
negeqi |
⊢ - ( i · i ) = - - 1 |
65 |
|
negneg1e1 |
⊢ - - 1 = 1 |
66 |
62 64 65
|
3eqtri |
⊢ ( i · - i ) = 1 |
67 |
66
|
oveq1i |
⊢ ( ( i · - i ) · ( 𝐴 ·ih 𝐵 ) ) = ( 1 · ( 𝐴 ·ih 𝐵 ) ) |
68 |
31 56 6
|
mulassi |
⊢ ( ( i · - i ) · ( 𝐴 ·ih 𝐵 ) ) = ( i · ( - i · ( 𝐴 ·ih 𝐵 ) ) ) |
69 |
6
|
mulid2i |
⊢ ( 1 · ( 𝐴 ·ih 𝐵 ) ) = ( 𝐴 ·ih 𝐵 ) |
70 |
67 68 69
|
3eqtr3i |
⊢ ( i · ( - i · ( 𝐴 ·ih 𝐵 ) ) ) = ( 𝐴 ·ih 𝐵 ) |
71 |
63
|
oveq1i |
⊢ ( ( i · i ) · ( 𝐶 ·ih 𝐷 ) ) = ( - 1 · ( 𝐶 ·ih 𝐷 ) ) |
72 |
31 31 9
|
mulassi |
⊢ ( ( i · i ) · ( 𝐶 ·ih 𝐷 ) ) = ( i · ( i · ( 𝐶 ·ih 𝐷 ) ) ) |
73 |
9
|
mulm1i |
⊢ ( - 1 · ( 𝐶 ·ih 𝐷 ) ) = - ( 𝐶 ·ih 𝐷 ) |
74 |
71 72 73
|
3eqtr3i |
⊢ ( i · ( i · ( 𝐶 ·ih 𝐷 ) ) ) = - ( 𝐶 ·ih 𝐷 ) |
75 |
70 74
|
oveq12i |
⊢ ( ( i · ( - i · ( 𝐴 ·ih 𝐵 ) ) ) + ( i · ( i · ( 𝐶 ·ih 𝐷 ) ) ) ) = ( ( 𝐴 ·ih 𝐵 ) + - ( 𝐶 ·ih 𝐷 ) ) |
76 |
6 9
|
negsubi |
⊢ ( ( 𝐴 ·ih 𝐵 ) + - ( 𝐶 ·ih 𝐷 ) ) = ( ( 𝐴 ·ih 𝐵 ) − ( 𝐶 ·ih 𝐷 ) ) |
77 |
61 75 76
|
3eqtri |
⊢ ( i · ( ( - i · ( 𝐴 ·ih 𝐵 ) ) + ( i · ( 𝐶 ·ih 𝐷 ) ) ) ) = ( ( 𝐴 ·ih 𝐵 ) − ( 𝐶 ·ih 𝐷 ) ) |
78 |
77
|
oveq2i |
⊢ ( 2 · ( i · ( ( - i · ( 𝐴 ·ih 𝐵 ) ) + ( i · ( 𝐶 ·ih 𝐷 ) ) ) ) ) = ( 2 · ( ( 𝐴 ·ih 𝐵 ) − ( 𝐶 ·ih 𝐷 ) ) ) |
79 |
55 60 78
|
3eqtr2i |
⊢ ( i · ( ( ( 𝐴 +ℎ ( i ·ℎ 𝐶 ) ) ·ih ( 𝐷 +ℎ ( i ·ℎ 𝐵 ) ) ) − ( ( 𝐴 −ℎ ( i ·ℎ 𝐶 ) ) ·ih ( 𝐷 −ℎ ( i ·ℎ 𝐵 ) ) ) ) ) = ( 2 · ( ( 𝐴 ·ih 𝐵 ) − ( 𝐶 ·ih 𝐷 ) ) ) |
80 |
30 79
|
oveq12i |
⊢ ( ( ( ( 𝐴 +ℎ 𝐶 ) ·ih ( 𝐷 +ℎ 𝐵 ) ) − ( ( 𝐴 −ℎ 𝐶 ) ·ih ( 𝐷 −ℎ 𝐵 ) ) ) + ( i · ( ( ( 𝐴 +ℎ ( i ·ℎ 𝐶 ) ) ·ih ( 𝐷 +ℎ ( i ·ℎ 𝐵 ) ) ) − ( ( 𝐴 −ℎ ( i ·ℎ 𝐶 ) ) ·ih ( 𝐷 −ℎ ( i ·ℎ 𝐵 ) ) ) ) ) ) = ( ( 2 · ( ( 𝐴 ·ih 𝐵 ) + ( 𝐶 ·ih 𝐷 ) ) ) + ( 2 · ( ( 𝐴 ·ih 𝐵 ) − ( 𝐶 ·ih 𝐷 ) ) ) ) |
81 |
12 21 80
|
3eqtr4i |
⊢ ( 4 · ( 𝐴 ·ih 𝐵 ) ) = ( ( ( ( 𝐴 +ℎ 𝐶 ) ·ih ( 𝐷 +ℎ 𝐵 ) ) − ( ( 𝐴 −ℎ 𝐶 ) ·ih ( 𝐷 −ℎ 𝐵 ) ) ) + ( i · ( ( ( 𝐴 +ℎ ( i ·ℎ 𝐶 ) ) ·ih ( 𝐷 +ℎ ( i ·ℎ 𝐵 ) ) ) − ( ( 𝐴 −ℎ ( i ·ℎ 𝐶 ) ) ·ih ( 𝐷 −ℎ ( i ·ℎ 𝐵 ) ) ) ) ) ) |
82 |
5 6 7 81
|
mvllmuli |
⊢ ( 𝐴 ·ih 𝐵 ) = ( ( ( ( ( 𝐴 +ℎ 𝐶 ) ·ih ( 𝐷 +ℎ 𝐵 ) ) − ( ( 𝐴 −ℎ 𝐶 ) ·ih ( 𝐷 −ℎ 𝐵 ) ) ) + ( i · ( ( ( 𝐴 +ℎ ( i ·ℎ 𝐶 ) ) ·ih ( 𝐷 +ℎ ( i ·ℎ 𝐵 ) ) ) − ( ( 𝐴 −ℎ ( i ·ℎ 𝐶 ) ) ·ih ( 𝐷 −ℎ ( i ·ℎ 𝐵 ) ) ) ) ) ) / 4 ) |