| Step | Hyp | Ref | Expression | 
						
							| 1 |  | polid2.1 | ⊢ 𝐴  ∈   ℋ | 
						
							| 2 |  | polid2.2 | ⊢ 𝐵  ∈   ℋ | 
						
							| 3 |  | polid2.3 | ⊢ 𝐶  ∈   ℋ | 
						
							| 4 |  | polid2.4 | ⊢ 𝐷  ∈   ℋ | 
						
							| 5 |  | 4cn | ⊢ 4  ∈  ℂ | 
						
							| 6 | 1 2 | hicli | ⊢ ( 𝐴  ·ih  𝐵 )  ∈  ℂ | 
						
							| 7 |  | 4ne0 | ⊢ 4  ≠  0 | 
						
							| 8 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 9 | 3 4 | hicli | ⊢ ( 𝐶  ·ih  𝐷 )  ∈  ℂ | 
						
							| 10 | 6 9 | addcli | ⊢ ( ( 𝐴  ·ih  𝐵 )  +  ( 𝐶  ·ih  𝐷 ) )  ∈  ℂ | 
						
							| 11 | 6 9 | subcli | ⊢ ( ( 𝐴  ·ih  𝐵 )  −  ( 𝐶  ·ih  𝐷 ) )  ∈  ℂ | 
						
							| 12 | 8 10 11 | adddii | ⊢ ( 2  ·  ( ( ( 𝐴  ·ih  𝐵 )  +  ( 𝐶  ·ih  𝐷 ) )  +  ( ( 𝐴  ·ih  𝐵 )  −  ( 𝐶  ·ih  𝐷 ) ) ) )  =  ( ( 2  ·  ( ( 𝐴  ·ih  𝐵 )  +  ( 𝐶  ·ih  𝐷 ) ) )  +  ( 2  ·  ( ( 𝐴  ·ih  𝐵 )  −  ( 𝐶  ·ih  𝐷 ) ) ) ) | 
						
							| 13 |  | ppncan | ⊢ ( ( ( 𝐴  ·ih  𝐵 )  ∈  ℂ  ∧  ( 𝐶  ·ih  𝐷 )  ∈  ℂ  ∧  ( 𝐴  ·ih  𝐵 )  ∈  ℂ )  →  ( ( ( 𝐴  ·ih  𝐵 )  +  ( 𝐶  ·ih  𝐷 ) )  +  ( ( 𝐴  ·ih  𝐵 )  −  ( 𝐶  ·ih  𝐷 ) ) )  =  ( ( 𝐴  ·ih  𝐵 )  +  ( 𝐴  ·ih  𝐵 ) ) ) | 
						
							| 14 | 6 9 6 13 | mp3an | ⊢ ( ( ( 𝐴  ·ih  𝐵 )  +  ( 𝐶  ·ih  𝐷 ) )  +  ( ( 𝐴  ·ih  𝐵 )  −  ( 𝐶  ·ih  𝐷 ) ) )  =  ( ( 𝐴  ·ih  𝐵 )  +  ( 𝐴  ·ih  𝐵 ) ) | 
						
							| 15 | 6 | 2timesi | ⊢ ( 2  ·  ( 𝐴  ·ih  𝐵 ) )  =  ( ( 𝐴  ·ih  𝐵 )  +  ( 𝐴  ·ih  𝐵 ) ) | 
						
							| 16 | 14 15 | eqtr4i | ⊢ ( ( ( 𝐴  ·ih  𝐵 )  +  ( 𝐶  ·ih  𝐷 ) )  +  ( ( 𝐴  ·ih  𝐵 )  −  ( 𝐶  ·ih  𝐷 ) ) )  =  ( 2  ·  ( 𝐴  ·ih  𝐵 ) ) | 
						
							| 17 | 16 | oveq2i | ⊢ ( 2  ·  ( ( ( 𝐴  ·ih  𝐵 )  +  ( 𝐶  ·ih  𝐷 ) )  +  ( ( 𝐴  ·ih  𝐵 )  −  ( 𝐶  ·ih  𝐷 ) ) ) )  =  ( 2  ·  ( 2  ·  ( 𝐴  ·ih  𝐵 ) ) ) | 
						
							| 18 | 8 8 6 | mulassi | ⊢ ( ( 2  ·  2 )  ·  ( 𝐴  ·ih  𝐵 ) )  =  ( 2  ·  ( 2  ·  ( 𝐴  ·ih  𝐵 ) ) ) | 
						
							| 19 |  | 2t2e4 | ⊢ ( 2  ·  2 )  =  4 | 
						
							| 20 | 19 | oveq1i | ⊢ ( ( 2  ·  2 )  ·  ( 𝐴  ·ih  𝐵 ) )  =  ( 4  ·  ( 𝐴  ·ih  𝐵 ) ) | 
						
							| 21 | 17 18 20 | 3eqtr2ri | ⊢ ( 4  ·  ( 𝐴  ·ih  𝐵 ) )  =  ( 2  ·  ( ( ( 𝐴  ·ih  𝐵 )  +  ( 𝐶  ·ih  𝐷 ) )  +  ( ( 𝐴  ·ih  𝐵 )  −  ( 𝐶  ·ih  𝐷 ) ) ) ) | 
						
							| 22 | 1 4 | hicli | ⊢ ( 𝐴  ·ih  𝐷 )  ∈  ℂ | 
						
							| 23 | 3 2 | hicli | ⊢ ( 𝐶  ·ih  𝐵 )  ∈  ℂ | 
						
							| 24 | 22 23 | addcli | ⊢ ( ( 𝐴  ·ih  𝐷 )  +  ( 𝐶  ·ih  𝐵 ) )  ∈  ℂ | 
						
							| 25 | 24 10 10 | pnncani | ⊢ ( ( ( ( 𝐴  ·ih  𝐷 )  +  ( 𝐶  ·ih  𝐵 ) )  +  ( ( 𝐴  ·ih  𝐵 )  +  ( 𝐶  ·ih  𝐷 ) ) )  −  ( ( ( 𝐴  ·ih  𝐷 )  +  ( 𝐶  ·ih  𝐵 ) )  −  ( ( 𝐴  ·ih  𝐵 )  +  ( 𝐶  ·ih  𝐷 ) ) ) )  =  ( ( ( 𝐴  ·ih  𝐵 )  +  ( 𝐶  ·ih  𝐷 ) )  +  ( ( 𝐴  ·ih  𝐵 )  +  ( 𝐶  ·ih  𝐷 ) ) ) | 
						
							| 26 | 1 3 4 2 | normlem8 | ⊢ ( ( 𝐴  +ℎ  𝐶 )  ·ih  ( 𝐷  +ℎ  𝐵 ) )  =  ( ( ( 𝐴  ·ih  𝐷 )  +  ( 𝐶  ·ih  𝐵 ) )  +  ( ( 𝐴  ·ih  𝐵 )  +  ( 𝐶  ·ih  𝐷 ) ) ) | 
						
							| 27 | 1 3 4 2 | normlem9 | ⊢ ( ( 𝐴  −ℎ  𝐶 )  ·ih  ( 𝐷  −ℎ  𝐵 ) )  =  ( ( ( 𝐴  ·ih  𝐷 )  +  ( 𝐶  ·ih  𝐵 ) )  −  ( ( 𝐴  ·ih  𝐵 )  +  ( 𝐶  ·ih  𝐷 ) ) ) | 
						
							| 28 | 26 27 | oveq12i | ⊢ ( ( ( 𝐴  +ℎ  𝐶 )  ·ih  ( 𝐷  +ℎ  𝐵 ) )  −  ( ( 𝐴  −ℎ  𝐶 )  ·ih  ( 𝐷  −ℎ  𝐵 ) ) )  =  ( ( ( ( 𝐴  ·ih  𝐷 )  +  ( 𝐶  ·ih  𝐵 ) )  +  ( ( 𝐴  ·ih  𝐵 )  +  ( 𝐶  ·ih  𝐷 ) ) )  −  ( ( ( 𝐴  ·ih  𝐷 )  +  ( 𝐶  ·ih  𝐵 ) )  −  ( ( 𝐴  ·ih  𝐵 )  +  ( 𝐶  ·ih  𝐷 ) ) ) ) | 
						
							| 29 | 10 | 2timesi | ⊢ ( 2  ·  ( ( 𝐴  ·ih  𝐵 )  +  ( 𝐶  ·ih  𝐷 ) ) )  =  ( ( ( 𝐴  ·ih  𝐵 )  +  ( 𝐶  ·ih  𝐷 ) )  +  ( ( 𝐴  ·ih  𝐵 )  +  ( 𝐶  ·ih  𝐷 ) ) ) | 
						
							| 30 | 25 28 29 | 3eqtr4i | ⊢ ( ( ( 𝐴  +ℎ  𝐶 )  ·ih  ( 𝐷  +ℎ  𝐵 ) )  −  ( ( 𝐴  −ℎ  𝐶 )  ·ih  ( 𝐷  −ℎ  𝐵 ) ) )  =  ( 2  ·  ( ( 𝐴  ·ih  𝐵 )  +  ( 𝐶  ·ih  𝐷 ) ) ) | 
						
							| 31 |  | ax-icn | ⊢ i  ∈  ℂ | 
						
							| 32 | 31 3 | hvmulcli | ⊢ ( i  ·ℎ  𝐶 )  ∈   ℋ | 
						
							| 33 | 31 2 | hvmulcli | ⊢ ( i  ·ℎ  𝐵 )  ∈   ℋ | 
						
							| 34 | 1 32 4 33 | normlem8 | ⊢ ( ( 𝐴  +ℎ  ( i  ·ℎ  𝐶 ) )  ·ih  ( 𝐷  +ℎ  ( i  ·ℎ  𝐵 ) ) )  =  ( ( ( 𝐴  ·ih  𝐷 )  +  ( ( i  ·ℎ  𝐶 )  ·ih  ( i  ·ℎ  𝐵 ) ) )  +  ( ( 𝐴  ·ih  ( i  ·ℎ  𝐵 ) )  +  ( ( i  ·ℎ  𝐶 )  ·ih  𝐷 ) ) ) | 
						
							| 35 | 1 32 4 33 | normlem9 | ⊢ ( ( 𝐴  −ℎ  ( i  ·ℎ  𝐶 ) )  ·ih  ( 𝐷  −ℎ  ( i  ·ℎ  𝐵 ) ) )  =  ( ( ( 𝐴  ·ih  𝐷 )  +  ( ( i  ·ℎ  𝐶 )  ·ih  ( i  ·ℎ  𝐵 ) ) )  −  ( ( 𝐴  ·ih  ( i  ·ℎ  𝐵 ) )  +  ( ( i  ·ℎ  𝐶 )  ·ih  𝐷 ) ) ) | 
						
							| 36 | 34 35 | oveq12i | ⊢ ( ( ( 𝐴  +ℎ  ( i  ·ℎ  𝐶 ) )  ·ih  ( 𝐷  +ℎ  ( i  ·ℎ  𝐵 ) ) )  −  ( ( 𝐴  −ℎ  ( i  ·ℎ  𝐶 ) )  ·ih  ( 𝐷  −ℎ  ( i  ·ℎ  𝐵 ) ) ) )  =  ( ( ( ( 𝐴  ·ih  𝐷 )  +  ( ( i  ·ℎ  𝐶 )  ·ih  ( i  ·ℎ  𝐵 ) ) )  +  ( ( 𝐴  ·ih  ( i  ·ℎ  𝐵 ) )  +  ( ( i  ·ℎ  𝐶 )  ·ih  𝐷 ) ) )  −  ( ( ( 𝐴  ·ih  𝐷 )  +  ( ( i  ·ℎ  𝐶 )  ·ih  ( i  ·ℎ  𝐵 ) ) )  −  ( ( 𝐴  ·ih  ( i  ·ℎ  𝐵 ) )  +  ( ( i  ·ℎ  𝐶 )  ·ih  𝐷 ) ) ) ) | 
						
							| 37 | 32 33 | hicli | ⊢ ( ( i  ·ℎ  𝐶 )  ·ih  ( i  ·ℎ  𝐵 ) )  ∈  ℂ | 
						
							| 38 | 22 37 | addcli | ⊢ ( ( 𝐴  ·ih  𝐷 )  +  ( ( i  ·ℎ  𝐶 )  ·ih  ( i  ·ℎ  𝐵 ) ) )  ∈  ℂ | 
						
							| 39 | 1 33 | hicli | ⊢ ( 𝐴  ·ih  ( i  ·ℎ  𝐵 ) )  ∈  ℂ | 
						
							| 40 | 32 4 | hicli | ⊢ ( ( i  ·ℎ  𝐶 )  ·ih  𝐷 )  ∈  ℂ | 
						
							| 41 | 39 40 | addcli | ⊢ ( ( 𝐴  ·ih  ( i  ·ℎ  𝐵 ) )  +  ( ( i  ·ℎ  𝐶 )  ·ih  𝐷 ) )  ∈  ℂ | 
						
							| 42 | 38 41 41 | pnncani | ⊢ ( ( ( ( 𝐴  ·ih  𝐷 )  +  ( ( i  ·ℎ  𝐶 )  ·ih  ( i  ·ℎ  𝐵 ) ) )  +  ( ( 𝐴  ·ih  ( i  ·ℎ  𝐵 ) )  +  ( ( i  ·ℎ  𝐶 )  ·ih  𝐷 ) ) )  −  ( ( ( 𝐴  ·ih  𝐷 )  +  ( ( i  ·ℎ  𝐶 )  ·ih  ( i  ·ℎ  𝐵 ) ) )  −  ( ( 𝐴  ·ih  ( i  ·ℎ  𝐵 ) )  +  ( ( i  ·ℎ  𝐶 )  ·ih  𝐷 ) ) ) )  =  ( ( ( 𝐴  ·ih  ( i  ·ℎ  𝐵 ) )  +  ( ( i  ·ℎ  𝐶 )  ·ih  𝐷 ) )  +  ( ( 𝐴  ·ih  ( i  ·ℎ  𝐵 ) )  +  ( ( i  ·ℎ  𝐶 )  ·ih  𝐷 ) ) ) | 
						
							| 43 | 41 | 2timesi | ⊢ ( 2  ·  ( ( 𝐴  ·ih  ( i  ·ℎ  𝐵 ) )  +  ( ( i  ·ℎ  𝐶 )  ·ih  𝐷 ) ) )  =  ( ( ( 𝐴  ·ih  ( i  ·ℎ  𝐵 ) )  +  ( ( i  ·ℎ  𝐶 )  ·ih  𝐷 ) )  +  ( ( 𝐴  ·ih  ( i  ·ℎ  𝐵 ) )  +  ( ( i  ·ℎ  𝐶 )  ·ih  𝐷 ) ) ) | 
						
							| 44 |  | his5 | ⊢ ( ( i  ∈  ℂ  ∧  𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ )  →  ( 𝐴  ·ih  ( i  ·ℎ  𝐵 ) )  =  ( ( ∗ ‘ i )  ·  ( 𝐴  ·ih  𝐵 ) ) ) | 
						
							| 45 | 31 1 2 44 | mp3an | ⊢ ( 𝐴  ·ih  ( i  ·ℎ  𝐵 ) )  =  ( ( ∗ ‘ i )  ·  ( 𝐴  ·ih  𝐵 ) ) | 
						
							| 46 |  | cji | ⊢ ( ∗ ‘ i )  =  - i | 
						
							| 47 | 46 | oveq1i | ⊢ ( ( ∗ ‘ i )  ·  ( 𝐴  ·ih  𝐵 ) )  =  ( - i  ·  ( 𝐴  ·ih  𝐵 ) ) | 
						
							| 48 | 45 47 | eqtri | ⊢ ( 𝐴  ·ih  ( i  ·ℎ  𝐵 ) )  =  ( - i  ·  ( 𝐴  ·ih  𝐵 ) ) | 
						
							| 49 |  | ax-his3 | ⊢ ( ( i  ∈  ℂ  ∧  𝐶  ∈   ℋ  ∧  𝐷  ∈   ℋ )  →  ( ( i  ·ℎ  𝐶 )  ·ih  𝐷 )  =  ( i  ·  ( 𝐶  ·ih  𝐷 ) ) ) | 
						
							| 50 | 31 3 4 49 | mp3an | ⊢ ( ( i  ·ℎ  𝐶 )  ·ih  𝐷 )  =  ( i  ·  ( 𝐶  ·ih  𝐷 ) ) | 
						
							| 51 | 48 50 | oveq12i | ⊢ ( ( 𝐴  ·ih  ( i  ·ℎ  𝐵 ) )  +  ( ( i  ·ℎ  𝐶 )  ·ih  𝐷 ) )  =  ( ( - i  ·  ( 𝐴  ·ih  𝐵 ) )  +  ( i  ·  ( 𝐶  ·ih  𝐷 ) ) ) | 
						
							| 52 | 51 | oveq2i | ⊢ ( 2  ·  ( ( 𝐴  ·ih  ( i  ·ℎ  𝐵 ) )  +  ( ( i  ·ℎ  𝐶 )  ·ih  𝐷 ) ) )  =  ( 2  ·  ( ( - i  ·  ( 𝐴  ·ih  𝐵 ) )  +  ( i  ·  ( 𝐶  ·ih  𝐷 ) ) ) ) | 
						
							| 53 | 43 52 | eqtr3i | ⊢ ( ( ( 𝐴  ·ih  ( i  ·ℎ  𝐵 ) )  +  ( ( i  ·ℎ  𝐶 )  ·ih  𝐷 ) )  +  ( ( 𝐴  ·ih  ( i  ·ℎ  𝐵 ) )  +  ( ( i  ·ℎ  𝐶 )  ·ih  𝐷 ) ) )  =  ( 2  ·  ( ( - i  ·  ( 𝐴  ·ih  𝐵 ) )  +  ( i  ·  ( 𝐶  ·ih  𝐷 ) ) ) ) | 
						
							| 54 | 36 42 53 | 3eqtri | ⊢ ( ( ( 𝐴  +ℎ  ( i  ·ℎ  𝐶 ) )  ·ih  ( 𝐷  +ℎ  ( i  ·ℎ  𝐵 ) ) )  −  ( ( 𝐴  −ℎ  ( i  ·ℎ  𝐶 ) )  ·ih  ( 𝐷  −ℎ  ( i  ·ℎ  𝐵 ) ) ) )  =  ( 2  ·  ( ( - i  ·  ( 𝐴  ·ih  𝐵 ) )  +  ( i  ·  ( 𝐶  ·ih  𝐷 ) ) ) ) | 
						
							| 55 | 54 | oveq2i | ⊢ ( i  ·  ( ( ( 𝐴  +ℎ  ( i  ·ℎ  𝐶 ) )  ·ih  ( 𝐷  +ℎ  ( i  ·ℎ  𝐵 ) ) )  −  ( ( 𝐴  −ℎ  ( i  ·ℎ  𝐶 ) )  ·ih  ( 𝐷  −ℎ  ( i  ·ℎ  𝐵 ) ) ) ) )  =  ( i  ·  ( 2  ·  ( ( - i  ·  ( 𝐴  ·ih  𝐵 ) )  +  ( i  ·  ( 𝐶  ·ih  𝐷 ) ) ) ) ) | 
						
							| 56 |  | negicn | ⊢ - i  ∈  ℂ | 
						
							| 57 | 56 6 | mulcli | ⊢ ( - i  ·  ( 𝐴  ·ih  𝐵 ) )  ∈  ℂ | 
						
							| 58 | 31 9 | mulcli | ⊢ ( i  ·  ( 𝐶  ·ih  𝐷 ) )  ∈  ℂ | 
						
							| 59 | 57 58 | addcli | ⊢ ( ( - i  ·  ( 𝐴  ·ih  𝐵 ) )  +  ( i  ·  ( 𝐶  ·ih  𝐷 ) ) )  ∈  ℂ | 
						
							| 60 | 8 31 59 | mul12i | ⊢ ( 2  ·  ( i  ·  ( ( - i  ·  ( 𝐴  ·ih  𝐵 ) )  +  ( i  ·  ( 𝐶  ·ih  𝐷 ) ) ) ) )  =  ( i  ·  ( 2  ·  ( ( - i  ·  ( 𝐴  ·ih  𝐵 ) )  +  ( i  ·  ( 𝐶  ·ih  𝐷 ) ) ) ) ) | 
						
							| 61 | 31 57 58 | adddii | ⊢ ( i  ·  ( ( - i  ·  ( 𝐴  ·ih  𝐵 ) )  +  ( i  ·  ( 𝐶  ·ih  𝐷 ) ) ) )  =  ( ( i  ·  ( - i  ·  ( 𝐴  ·ih  𝐵 ) ) )  +  ( i  ·  ( i  ·  ( 𝐶  ·ih  𝐷 ) ) ) ) | 
						
							| 62 | 31 31 | mulneg2i | ⊢ ( i  ·  - i )  =  - ( i  ·  i ) | 
						
							| 63 |  | ixi | ⊢ ( i  ·  i )  =  - 1 | 
						
							| 64 | 63 | negeqi | ⊢ - ( i  ·  i )  =  - - 1 | 
						
							| 65 |  | negneg1e1 | ⊢ - - 1  =  1 | 
						
							| 66 | 62 64 65 | 3eqtri | ⊢ ( i  ·  - i )  =  1 | 
						
							| 67 | 66 | oveq1i | ⊢ ( ( i  ·  - i )  ·  ( 𝐴  ·ih  𝐵 ) )  =  ( 1  ·  ( 𝐴  ·ih  𝐵 ) ) | 
						
							| 68 | 31 56 6 | mulassi | ⊢ ( ( i  ·  - i )  ·  ( 𝐴  ·ih  𝐵 ) )  =  ( i  ·  ( - i  ·  ( 𝐴  ·ih  𝐵 ) ) ) | 
						
							| 69 | 6 | mullidi | ⊢ ( 1  ·  ( 𝐴  ·ih  𝐵 ) )  =  ( 𝐴  ·ih  𝐵 ) | 
						
							| 70 | 67 68 69 | 3eqtr3i | ⊢ ( i  ·  ( - i  ·  ( 𝐴  ·ih  𝐵 ) ) )  =  ( 𝐴  ·ih  𝐵 ) | 
						
							| 71 | 63 | oveq1i | ⊢ ( ( i  ·  i )  ·  ( 𝐶  ·ih  𝐷 ) )  =  ( - 1  ·  ( 𝐶  ·ih  𝐷 ) ) | 
						
							| 72 | 31 31 9 | mulassi | ⊢ ( ( i  ·  i )  ·  ( 𝐶  ·ih  𝐷 ) )  =  ( i  ·  ( i  ·  ( 𝐶  ·ih  𝐷 ) ) ) | 
						
							| 73 | 9 | mulm1i | ⊢ ( - 1  ·  ( 𝐶  ·ih  𝐷 ) )  =  - ( 𝐶  ·ih  𝐷 ) | 
						
							| 74 | 71 72 73 | 3eqtr3i | ⊢ ( i  ·  ( i  ·  ( 𝐶  ·ih  𝐷 ) ) )  =  - ( 𝐶  ·ih  𝐷 ) | 
						
							| 75 | 70 74 | oveq12i | ⊢ ( ( i  ·  ( - i  ·  ( 𝐴  ·ih  𝐵 ) ) )  +  ( i  ·  ( i  ·  ( 𝐶  ·ih  𝐷 ) ) ) )  =  ( ( 𝐴  ·ih  𝐵 )  +  - ( 𝐶  ·ih  𝐷 ) ) | 
						
							| 76 | 6 9 | negsubi | ⊢ ( ( 𝐴  ·ih  𝐵 )  +  - ( 𝐶  ·ih  𝐷 ) )  =  ( ( 𝐴  ·ih  𝐵 )  −  ( 𝐶  ·ih  𝐷 ) ) | 
						
							| 77 | 61 75 76 | 3eqtri | ⊢ ( i  ·  ( ( - i  ·  ( 𝐴  ·ih  𝐵 ) )  +  ( i  ·  ( 𝐶  ·ih  𝐷 ) ) ) )  =  ( ( 𝐴  ·ih  𝐵 )  −  ( 𝐶  ·ih  𝐷 ) ) | 
						
							| 78 | 77 | oveq2i | ⊢ ( 2  ·  ( i  ·  ( ( - i  ·  ( 𝐴  ·ih  𝐵 ) )  +  ( i  ·  ( 𝐶  ·ih  𝐷 ) ) ) ) )  =  ( 2  ·  ( ( 𝐴  ·ih  𝐵 )  −  ( 𝐶  ·ih  𝐷 ) ) ) | 
						
							| 79 | 55 60 78 | 3eqtr2i | ⊢ ( i  ·  ( ( ( 𝐴  +ℎ  ( i  ·ℎ  𝐶 ) )  ·ih  ( 𝐷  +ℎ  ( i  ·ℎ  𝐵 ) ) )  −  ( ( 𝐴  −ℎ  ( i  ·ℎ  𝐶 ) )  ·ih  ( 𝐷  −ℎ  ( i  ·ℎ  𝐵 ) ) ) ) )  =  ( 2  ·  ( ( 𝐴  ·ih  𝐵 )  −  ( 𝐶  ·ih  𝐷 ) ) ) | 
						
							| 80 | 30 79 | oveq12i | ⊢ ( ( ( ( 𝐴  +ℎ  𝐶 )  ·ih  ( 𝐷  +ℎ  𝐵 ) )  −  ( ( 𝐴  −ℎ  𝐶 )  ·ih  ( 𝐷  −ℎ  𝐵 ) ) )  +  ( i  ·  ( ( ( 𝐴  +ℎ  ( i  ·ℎ  𝐶 ) )  ·ih  ( 𝐷  +ℎ  ( i  ·ℎ  𝐵 ) ) )  −  ( ( 𝐴  −ℎ  ( i  ·ℎ  𝐶 ) )  ·ih  ( 𝐷  −ℎ  ( i  ·ℎ  𝐵 ) ) ) ) ) )  =  ( ( 2  ·  ( ( 𝐴  ·ih  𝐵 )  +  ( 𝐶  ·ih  𝐷 ) ) )  +  ( 2  ·  ( ( 𝐴  ·ih  𝐵 )  −  ( 𝐶  ·ih  𝐷 ) ) ) ) | 
						
							| 81 | 12 21 80 | 3eqtr4i | ⊢ ( 4  ·  ( 𝐴  ·ih  𝐵 ) )  =  ( ( ( ( 𝐴  +ℎ  𝐶 )  ·ih  ( 𝐷  +ℎ  𝐵 ) )  −  ( ( 𝐴  −ℎ  𝐶 )  ·ih  ( 𝐷  −ℎ  𝐵 ) ) )  +  ( i  ·  ( ( ( 𝐴  +ℎ  ( i  ·ℎ  𝐶 ) )  ·ih  ( 𝐷  +ℎ  ( i  ·ℎ  𝐵 ) ) )  −  ( ( 𝐴  −ℎ  ( i  ·ℎ  𝐶 ) )  ·ih  ( 𝐷  −ℎ  ( i  ·ℎ  𝐵 ) ) ) ) ) ) | 
						
							| 82 | 5 6 7 81 | mvllmuli | ⊢ ( 𝐴  ·ih  𝐵 )  =  ( ( ( ( ( 𝐴  +ℎ  𝐶 )  ·ih  ( 𝐷  +ℎ  𝐵 ) )  −  ( ( 𝐴  −ℎ  𝐶 )  ·ih  ( 𝐷  −ℎ  𝐵 ) ) )  +  ( i  ·  ( ( ( 𝐴  +ℎ  ( i  ·ℎ  𝐶 ) )  ·ih  ( 𝐷  +ℎ  ( i  ·ℎ  𝐵 ) ) )  −  ( ( 𝐴  −ℎ  ( i  ·ℎ  𝐶 ) )  ·ih  ( 𝐷  −ℎ  ( i  ·ℎ  𝐵 ) ) ) ) ) )  /  4 ) |