Step |
Hyp |
Ref |
Expression |
1 |
|
polpmap.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
polpmap.o |
⊢ ⊥ = ( oc ‘ 𝐾 ) |
3 |
|
polpmap.m |
⊢ 𝑀 = ( pmap ‘ 𝐾 ) |
4 |
|
polpmap.p |
⊢ 𝑃 = ( ⊥𝑃 ‘ 𝐾 ) |
5 |
|
eqid |
⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) |
6 |
1 5 3
|
pmapssat |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( 𝑀 ‘ 𝑋 ) ⊆ ( Atoms ‘ 𝐾 ) ) |
7 |
|
eqid |
⊢ ( lub ‘ 𝐾 ) = ( lub ‘ 𝐾 ) |
8 |
7 2 5 3 4
|
polval2N |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑀 ‘ 𝑋 ) ⊆ ( Atoms ‘ 𝐾 ) ) → ( 𝑃 ‘ ( 𝑀 ‘ 𝑋 ) ) = ( 𝑀 ‘ ( ⊥ ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑀 ‘ 𝑋 ) ) ) ) ) |
9 |
6 8
|
syldan |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( 𝑃 ‘ ( 𝑀 ‘ 𝑋 ) ) = ( 𝑀 ‘ ( ⊥ ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑀 ‘ 𝑋 ) ) ) ) ) |
10 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
11 |
1 10 5 3
|
pmapval |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( 𝑀 ‘ 𝑋 ) = { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ( le ‘ 𝐾 ) 𝑋 } ) |
12 |
11
|
fveq2d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( ( lub ‘ 𝐾 ) ‘ ( 𝑀 ‘ 𝑋 ) ) = ( ( lub ‘ 𝐾 ) ‘ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ( le ‘ 𝐾 ) 𝑋 } ) ) |
13 |
|
hlomcmat |
⊢ ( 𝐾 ∈ HL → ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ) |
14 |
1 10 7 5
|
atlatmstc |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → ( ( lub ‘ 𝐾 ) ‘ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ( le ‘ 𝐾 ) 𝑋 } ) = 𝑋 ) |
15 |
13 14
|
sylan |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( ( lub ‘ 𝐾 ) ‘ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ( le ‘ 𝐾 ) 𝑋 } ) = 𝑋 ) |
16 |
12 15
|
eqtrd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( ( lub ‘ 𝐾 ) ‘ ( 𝑀 ‘ 𝑋 ) ) = 𝑋 ) |
17 |
16
|
fveq2d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( ⊥ ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑀 ‘ 𝑋 ) ) ) = ( ⊥ ‘ 𝑋 ) ) |
18 |
17
|
fveq2d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( 𝑀 ‘ ( ⊥ ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑀 ‘ 𝑋 ) ) ) ) = ( 𝑀 ‘ ( ⊥ ‘ 𝑋 ) ) ) |
19 |
9 18
|
eqtrd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( 𝑃 ‘ ( 𝑀 ‘ 𝑋 ) ) = ( 𝑀 ‘ ( ⊥ ‘ 𝑋 ) ) ) |