Description: The polarity of a set of atoms is a set of atoms. (Contributed by NM, 24-Jan-2012) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | polssat.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
polssat.p | ⊢ ⊥ = ( ⊥𝑃 ‘ 𝐾 ) | ||
Assertion | polssatN | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) → ( ⊥ ‘ 𝑋 ) ⊆ 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | polssat.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
2 | polssat.p | ⊢ ⊥ = ( ⊥𝑃 ‘ 𝐾 ) | |
3 | eqid | ⊢ ( PSubSp ‘ 𝐾 ) = ( PSubSp ‘ 𝐾 ) | |
4 | 1 3 2 | polsubN | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) → ( ⊥ ‘ 𝑋 ) ∈ ( PSubSp ‘ 𝐾 ) ) |
5 | 1 3 | psubssat | ⊢ ( ( 𝐾 ∈ HL ∧ ( ⊥ ‘ 𝑋 ) ∈ ( PSubSp ‘ 𝐾 ) ) → ( ⊥ ‘ 𝑋 ) ⊆ 𝐴 ) |
6 | 4 5 | syldan | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) → ( ⊥ ‘ 𝑋 ) ⊆ 𝐴 ) |