Metamath Proof Explorer


Theorem polssatN

Description: The polarity of a set of atoms is a set of atoms. (Contributed by NM, 24-Jan-2012) (New usage is discouraged.)

Ref Expression
Hypotheses polssat.a 𝐴 = ( Atoms ‘ 𝐾 )
polssat.p = ( ⊥𝑃𝐾 )
Assertion polssatN ( ( 𝐾 ∈ HL ∧ 𝑋𝐴 ) → ( 𝑋 ) ⊆ 𝐴 )

Proof

Step Hyp Ref Expression
1 polssat.a 𝐴 = ( Atoms ‘ 𝐾 )
2 polssat.p = ( ⊥𝑃𝐾 )
3 eqid ( PSubSp ‘ 𝐾 ) = ( PSubSp ‘ 𝐾 )
4 1 3 2 polsubN ( ( 𝐾 ∈ HL ∧ 𝑋𝐴 ) → ( 𝑋 ) ∈ ( PSubSp ‘ 𝐾 ) )
5 1 3 psubssat ( ( 𝐾 ∈ HL ∧ ( 𝑋 ) ∈ ( PSubSp ‘ 𝐾 ) ) → ( 𝑋 ) ⊆ 𝐴 )
6 4 5 syldan ( ( 𝐾 ∈ HL ∧ 𝑋𝐴 ) → ( 𝑋 ) ⊆ 𝐴 )