Step |
Hyp |
Ref |
Expression |
1 |
|
polsubsp.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
2 |
|
polsubsp.s |
⊢ 𝑆 = ( PSubSp ‘ 𝐾 ) |
3 |
|
polsubsp.p |
⊢ ⊥ = ( ⊥𝑃 ‘ 𝐾 ) |
4 |
|
eqid |
⊢ ( lub ‘ 𝐾 ) = ( lub ‘ 𝐾 ) |
5 |
|
eqid |
⊢ ( oc ‘ 𝐾 ) = ( oc ‘ 𝐾 ) |
6 |
|
eqid |
⊢ ( pmap ‘ 𝐾 ) = ( pmap ‘ 𝐾 ) |
7 |
4 5 1 6 3
|
polval2N |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) → ( ⊥ ‘ 𝑋 ) = ( ( pmap ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ) ) ) |
8 |
|
hllat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) |
9 |
8
|
adantr |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) → 𝐾 ∈ Lat ) |
10 |
|
hlop |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OP ) |
11 |
10
|
adantr |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) → 𝐾 ∈ OP ) |
12 |
|
hlclat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ CLat ) |
13 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
14 |
13 1
|
atssbase |
⊢ 𝐴 ⊆ ( Base ‘ 𝐾 ) |
15 |
|
sstr |
⊢ ( ( 𝑋 ⊆ 𝐴 ∧ 𝐴 ⊆ ( Base ‘ 𝐾 ) ) → 𝑋 ⊆ ( Base ‘ 𝐾 ) ) |
16 |
14 15
|
mpan2 |
⊢ ( 𝑋 ⊆ 𝐴 → 𝑋 ⊆ ( Base ‘ 𝐾 ) ) |
17 |
13 4
|
clatlubcl |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑋 ⊆ ( Base ‘ 𝐾 ) ) → ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝐾 ) ) |
18 |
12 16 17
|
syl2an |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) → ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝐾 ) ) |
19 |
13 5
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ) ∈ ( Base ‘ 𝐾 ) ) |
20 |
11 18 19
|
syl2anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) → ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ) ∈ ( Base ‘ 𝐾 ) ) |
21 |
13 2 6
|
pmapsub |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ) ∈ ( Base ‘ 𝐾 ) ) → ( ( pmap ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ) ) ∈ 𝑆 ) |
22 |
9 20 21
|
syl2anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) → ( ( pmap ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ) ) ∈ 𝑆 ) |
23 |
7 22
|
eqeltrd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) → ( ⊥ ‘ 𝑋 ) ∈ 𝑆 ) |