Metamath Proof Explorer


Theorem polval2N

Description: Alternate expression for value of the projective subspace polarity function. Equation for polarity in Holland95 p. 223. (Contributed by NM, 22-Jan-2012) (New usage is discouraged.)

Ref Expression
Hypotheses polval2.u 𝑈 = ( lub ‘ 𝐾 )
polval2.o = ( oc ‘ 𝐾 )
polval2.a 𝐴 = ( Atoms ‘ 𝐾 )
polval2.m 𝑀 = ( pmap ‘ 𝐾 )
polval2.p 𝑃 = ( ⊥𝑃𝐾 )
Assertion polval2N ( ( 𝐾 ∈ HL ∧ 𝑋𝐴 ) → ( 𝑃𝑋 ) = ( 𝑀 ‘ ( ‘ ( 𝑈𝑋 ) ) ) )

Proof

Step Hyp Ref Expression
1 polval2.u 𝑈 = ( lub ‘ 𝐾 )
2 polval2.o = ( oc ‘ 𝐾 )
3 polval2.a 𝐴 = ( Atoms ‘ 𝐾 )
4 polval2.m 𝑀 = ( pmap ‘ 𝐾 )
5 polval2.p 𝑃 = ( ⊥𝑃𝐾 )
6 2 3 4 5 polvalN ( ( 𝐾 ∈ HL ∧ 𝑋𝐴 ) → ( 𝑃𝑋 ) = ( 𝐴 𝑝𝑋 ( 𝑀 ‘ ( 𝑝 ) ) ) )
7 hlop ( 𝐾 ∈ HL → 𝐾 ∈ OP )
8 7 ad2antrr ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐴 ) ∧ 𝑝𝑋 ) → 𝐾 ∈ OP )
9 ssel2 ( ( 𝑋𝐴𝑝𝑋 ) → 𝑝𝐴 )
10 9 adantll ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐴 ) ∧ 𝑝𝑋 ) → 𝑝𝐴 )
11 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
12 11 3 atbase ( 𝑝𝐴𝑝 ∈ ( Base ‘ 𝐾 ) )
13 10 12 syl ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐴 ) ∧ 𝑝𝑋 ) → 𝑝 ∈ ( Base ‘ 𝐾 ) )
14 11 2 opoccl ( ( 𝐾 ∈ OP ∧ 𝑝 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑝 ) ∈ ( Base ‘ 𝐾 ) )
15 8 13 14 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐴 ) ∧ 𝑝𝑋 ) → ( 𝑝 ) ∈ ( Base ‘ 𝐾 ) )
16 15 ralrimiva ( ( 𝐾 ∈ HL ∧ 𝑋𝐴 ) → ∀ 𝑝𝑋 ( 𝑝 ) ∈ ( Base ‘ 𝐾 ) )
17 eqid ( glb ‘ 𝐾 ) = ( glb ‘ 𝐾 )
18 11 17 3 4 pmapglb2xN ( ( 𝐾 ∈ HL ∧ ∀ 𝑝𝑋 ( 𝑝 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝑀 ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑥 ∣ ∃ 𝑝𝑋 𝑥 = ( 𝑝 ) } ) ) = ( 𝐴 𝑝𝑋 ( 𝑀 ‘ ( 𝑝 ) ) ) )
19 16 18 syldan ( ( 𝐾 ∈ HL ∧ 𝑋𝐴 ) → ( 𝑀 ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑥 ∣ ∃ 𝑝𝑋 𝑥 = ( 𝑝 ) } ) ) = ( 𝐴 𝑝𝑋 ( 𝑀 ‘ ( 𝑝 ) ) ) )
20 11 1 17 2 glbconxN ( ( 𝐾 ∈ HL ∧ ∀ 𝑝𝑋 ( 𝑝 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( glb ‘ 𝐾 ) ‘ { 𝑥 ∣ ∃ 𝑝𝑋 𝑥 = ( 𝑝 ) } ) = ( ‘ ( 𝑈 ‘ { 𝑥 ∣ ∃ 𝑝𝑋 𝑥 = ( ‘ ( 𝑝 ) ) } ) ) )
21 16 20 syldan ( ( 𝐾 ∈ HL ∧ 𝑋𝐴 ) → ( ( glb ‘ 𝐾 ) ‘ { 𝑥 ∣ ∃ 𝑝𝑋 𝑥 = ( 𝑝 ) } ) = ( ‘ ( 𝑈 ‘ { 𝑥 ∣ ∃ 𝑝𝑋 𝑥 = ( ‘ ( 𝑝 ) ) } ) ) )
22 11 2 opococ ( ( 𝐾 ∈ OP ∧ 𝑝 ∈ ( Base ‘ 𝐾 ) ) → ( ‘ ( 𝑝 ) ) = 𝑝 )
23 8 13 22 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐴 ) ∧ 𝑝𝑋 ) → ( ‘ ( 𝑝 ) ) = 𝑝 )
24 23 eqeq2d ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐴 ) ∧ 𝑝𝑋 ) → ( 𝑥 = ( ‘ ( 𝑝 ) ) ↔ 𝑥 = 𝑝 ) )
25 24 rexbidva ( ( 𝐾 ∈ HL ∧ 𝑋𝐴 ) → ( ∃ 𝑝𝑋 𝑥 = ( ‘ ( 𝑝 ) ) ↔ ∃ 𝑝𝑋 𝑥 = 𝑝 ) )
26 25 abbidv ( ( 𝐾 ∈ HL ∧ 𝑋𝐴 ) → { 𝑥 ∣ ∃ 𝑝𝑋 𝑥 = ( ‘ ( 𝑝 ) ) } = { 𝑥 ∣ ∃ 𝑝𝑋 𝑥 = 𝑝 } )
27 df-rex ( ∃ 𝑝𝑋 𝑥 = 𝑝 ↔ ∃ 𝑝 ( 𝑝𝑋𝑥 = 𝑝 ) )
28 equcom ( 𝑥 = 𝑝𝑝 = 𝑥 )
29 28 anbi1ci ( ( 𝑝𝑋𝑥 = 𝑝 ) ↔ ( 𝑝 = 𝑥𝑝𝑋 ) )
30 29 exbii ( ∃ 𝑝 ( 𝑝𝑋𝑥 = 𝑝 ) ↔ ∃ 𝑝 ( 𝑝 = 𝑥𝑝𝑋 ) )
31 eleq1w ( 𝑝 = 𝑥 → ( 𝑝𝑋𝑥𝑋 ) )
32 31 equsexvw ( ∃ 𝑝 ( 𝑝 = 𝑥𝑝𝑋 ) ↔ 𝑥𝑋 )
33 27 30 32 3bitri ( ∃ 𝑝𝑋 𝑥 = 𝑝𝑥𝑋 )
34 33 abbii { 𝑥 ∣ ∃ 𝑝𝑋 𝑥 = 𝑝 } = { 𝑥𝑥𝑋 }
35 abid2 { 𝑥𝑥𝑋 } = 𝑋
36 34 35 eqtri { 𝑥 ∣ ∃ 𝑝𝑋 𝑥 = 𝑝 } = 𝑋
37 26 36 eqtrdi ( ( 𝐾 ∈ HL ∧ 𝑋𝐴 ) → { 𝑥 ∣ ∃ 𝑝𝑋 𝑥 = ( ‘ ( 𝑝 ) ) } = 𝑋 )
38 37 fveq2d ( ( 𝐾 ∈ HL ∧ 𝑋𝐴 ) → ( 𝑈 ‘ { 𝑥 ∣ ∃ 𝑝𝑋 𝑥 = ( ‘ ( 𝑝 ) ) } ) = ( 𝑈𝑋 ) )
39 38 fveq2d ( ( 𝐾 ∈ HL ∧ 𝑋𝐴 ) → ( ‘ ( 𝑈 ‘ { 𝑥 ∣ ∃ 𝑝𝑋 𝑥 = ( ‘ ( 𝑝 ) ) } ) ) = ( ‘ ( 𝑈𝑋 ) ) )
40 21 39 eqtrd ( ( 𝐾 ∈ HL ∧ 𝑋𝐴 ) → ( ( glb ‘ 𝐾 ) ‘ { 𝑥 ∣ ∃ 𝑝𝑋 𝑥 = ( 𝑝 ) } ) = ( ‘ ( 𝑈𝑋 ) ) )
41 40 fveq2d ( ( 𝐾 ∈ HL ∧ 𝑋𝐴 ) → ( 𝑀 ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑥 ∣ ∃ 𝑝𝑋 𝑥 = ( 𝑝 ) } ) ) = ( 𝑀 ‘ ( ‘ ( 𝑈𝑋 ) ) ) )
42 6 19 41 3eqtr2d ( ( 𝐾 ∈ HL ∧ 𝑋𝐴 ) → ( 𝑃𝑋 ) = ( 𝑀 ‘ ( ‘ ( 𝑈𝑋 ) ) ) )