Step |
Hyp |
Ref |
Expression |
1 |
|
polval2.u |
⊢ 𝑈 = ( lub ‘ 𝐾 ) |
2 |
|
polval2.o |
⊢ ⊥ = ( oc ‘ 𝐾 ) |
3 |
|
polval2.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
polval2.m |
⊢ 𝑀 = ( pmap ‘ 𝐾 ) |
5 |
|
polval2.p |
⊢ 𝑃 = ( ⊥𝑃 ‘ 𝐾 ) |
6 |
2 3 4 5
|
polvalN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) → ( 𝑃 ‘ 𝑋 ) = ( 𝐴 ∩ ∩ 𝑝 ∈ 𝑋 ( 𝑀 ‘ ( ⊥ ‘ 𝑝 ) ) ) ) |
7 |
|
hlop |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OP ) |
8 |
7
|
ad2antrr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) ∧ 𝑝 ∈ 𝑋 ) → 𝐾 ∈ OP ) |
9 |
|
ssel2 |
⊢ ( ( 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝑋 ) → 𝑝 ∈ 𝐴 ) |
10 |
9
|
adantll |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) ∧ 𝑝 ∈ 𝑋 ) → 𝑝 ∈ 𝐴 ) |
11 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
12 |
11 3
|
atbase |
⊢ ( 𝑝 ∈ 𝐴 → 𝑝 ∈ ( Base ‘ 𝐾 ) ) |
13 |
10 12
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) ∧ 𝑝 ∈ 𝑋 ) → 𝑝 ∈ ( Base ‘ 𝐾 ) ) |
14 |
11 2
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑝 ∈ ( Base ‘ 𝐾 ) ) → ( ⊥ ‘ 𝑝 ) ∈ ( Base ‘ 𝐾 ) ) |
15 |
8 13 14
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) ∧ 𝑝 ∈ 𝑋 ) → ( ⊥ ‘ 𝑝 ) ∈ ( Base ‘ 𝐾 ) ) |
16 |
15
|
ralrimiva |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) → ∀ 𝑝 ∈ 𝑋 ( ⊥ ‘ 𝑝 ) ∈ ( Base ‘ 𝐾 ) ) |
17 |
|
eqid |
⊢ ( glb ‘ 𝐾 ) = ( glb ‘ 𝐾 ) |
18 |
11 17 3 4
|
pmapglb2xN |
⊢ ( ( 𝐾 ∈ HL ∧ ∀ 𝑝 ∈ 𝑋 ( ⊥ ‘ 𝑝 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝑀 ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑥 ∣ ∃ 𝑝 ∈ 𝑋 𝑥 = ( ⊥ ‘ 𝑝 ) } ) ) = ( 𝐴 ∩ ∩ 𝑝 ∈ 𝑋 ( 𝑀 ‘ ( ⊥ ‘ 𝑝 ) ) ) ) |
19 |
16 18
|
syldan |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) → ( 𝑀 ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑥 ∣ ∃ 𝑝 ∈ 𝑋 𝑥 = ( ⊥ ‘ 𝑝 ) } ) ) = ( 𝐴 ∩ ∩ 𝑝 ∈ 𝑋 ( 𝑀 ‘ ( ⊥ ‘ 𝑝 ) ) ) ) |
20 |
11 1 17 2
|
glbconxN |
⊢ ( ( 𝐾 ∈ HL ∧ ∀ 𝑝 ∈ 𝑋 ( ⊥ ‘ 𝑝 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( glb ‘ 𝐾 ) ‘ { 𝑥 ∣ ∃ 𝑝 ∈ 𝑋 𝑥 = ( ⊥ ‘ 𝑝 ) } ) = ( ⊥ ‘ ( 𝑈 ‘ { 𝑥 ∣ ∃ 𝑝 ∈ 𝑋 𝑥 = ( ⊥ ‘ ( ⊥ ‘ 𝑝 ) ) } ) ) ) |
21 |
16 20
|
syldan |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) → ( ( glb ‘ 𝐾 ) ‘ { 𝑥 ∣ ∃ 𝑝 ∈ 𝑋 𝑥 = ( ⊥ ‘ 𝑝 ) } ) = ( ⊥ ‘ ( 𝑈 ‘ { 𝑥 ∣ ∃ 𝑝 ∈ 𝑋 𝑥 = ( ⊥ ‘ ( ⊥ ‘ 𝑝 ) ) } ) ) ) |
22 |
11 2
|
opococ |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑝 ∈ ( Base ‘ 𝐾 ) ) → ( ⊥ ‘ ( ⊥ ‘ 𝑝 ) ) = 𝑝 ) |
23 |
8 13 22
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) ∧ 𝑝 ∈ 𝑋 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑝 ) ) = 𝑝 ) |
24 |
23
|
eqeq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) ∧ 𝑝 ∈ 𝑋 ) → ( 𝑥 = ( ⊥ ‘ ( ⊥ ‘ 𝑝 ) ) ↔ 𝑥 = 𝑝 ) ) |
25 |
24
|
rexbidva |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) → ( ∃ 𝑝 ∈ 𝑋 𝑥 = ( ⊥ ‘ ( ⊥ ‘ 𝑝 ) ) ↔ ∃ 𝑝 ∈ 𝑋 𝑥 = 𝑝 ) ) |
26 |
25
|
abbidv |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) → { 𝑥 ∣ ∃ 𝑝 ∈ 𝑋 𝑥 = ( ⊥ ‘ ( ⊥ ‘ 𝑝 ) ) } = { 𝑥 ∣ ∃ 𝑝 ∈ 𝑋 𝑥 = 𝑝 } ) |
27 |
|
df-rex |
⊢ ( ∃ 𝑝 ∈ 𝑋 𝑥 = 𝑝 ↔ ∃ 𝑝 ( 𝑝 ∈ 𝑋 ∧ 𝑥 = 𝑝 ) ) |
28 |
|
equcom |
⊢ ( 𝑥 = 𝑝 ↔ 𝑝 = 𝑥 ) |
29 |
28
|
anbi1ci |
⊢ ( ( 𝑝 ∈ 𝑋 ∧ 𝑥 = 𝑝 ) ↔ ( 𝑝 = 𝑥 ∧ 𝑝 ∈ 𝑋 ) ) |
30 |
29
|
exbii |
⊢ ( ∃ 𝑝 ( 𝑝 ∈ 𝑋 ∧ 𝑥 = 𝑝 ) ↔ ∃ 𝑝 ( 𝑝 = 𝑥 ∧ 𝑝 ∈ 𝑋 ) ) |
31 |
|
eleq1w |
⊢ ( 𝑝 = 𝑥 → ( 𝑝 ∈ 𝑋 ↔ 𝑥 ∈ 𝑋 ) ) |
32 |
31
|
equsexvw |
⊢ ( ∃ 𝑝 ( 𝑝 = 𝑥 ∧ 𝑝 ∈ 𝑋 ) ↔ 𝑥 ∈ 𝑋 ) |
33 |
27 30 32
|
3bitri |
⊢ ( ∃ 𝑝 ∈ 𝑋 𝑥 = 𝑝 ↔ 𝑥 ∈ 𝑋 ) |
34 |
33
|
abbii |
⊢ { 𝑥 ∣ ∃ 𝑝 ∈ 𝑋 𝑥 = 𝑝 } = { 𝑥 ∣ 𝑥 ∈ 𝑋 } |
35 |
|
abid2 |
⊢ { 𝑥 ∣ 𝑥 ∈ 𝑋 } = 𝑋 |
36 |
34 35
|
eqtri |
⊢ { 𝑥 ∣ ∃ 𝑝 ∈ 𝑋 𝑥 = 𝑝 } = 𝑋 |
37 |
26 36
|
eqtrdi |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) → { 𝑥 ∣ ∃ 𝑝 ∈ 𝑋 𝑥 = ( ⊥ ‘ ( ⊥ ‘ 𝑝 ) ) } = 𝑋 ) |
38 |
37
|
fveq2d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) → ( 𝑈 ‘ { 𝑥 ∣ ∃ 𝑝 ∈ 𝑋 𝑥 = ( ⊥ ‘ ( ⊥ ‘ 𝑝 ) ) } ) = ( 𝑈 ‘ 𝑋 ) ) |
39 |
38
|
fveq2d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) → ( ⊥ ‘ ( 𝑈 ‘ { 𝑥 ∣ ∃ 𝑝 ∈ 𝑋 𝑥 = ( ⊥ ‘ ( ⊥ ‘ 𝑝 ) ) } ) ) = ( ⊥ ‘ ( 𝑈 ‘ 𝑋 ) ) ) |
40 |
21 39
|
eqtrd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) → ( ( glb ‘ 𝐾 ) ‘ { 𝑥 ∣ ∃ 𝑝 ∈ 𝑋 𝑥 = ( ⊥ ‘ 𝑝 ) } ) = ( ⊥ ‘ ( 𝑈 ‘ 𝑋 ) ) ) |
41 |
40
|
fveq2d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) → ( 𝑀 ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑥 ∣ ∃ 𝑝 ∈ 𝑋 𝑥 = ( ⊥ ‘ 𝑝 ) } ) ) = ( 𝑀 ‘ ( ⊥ ‘ ( 𝑈 ‘ 𝑋 ) ) ) ) |
42 |
6 19 41
|
3eqtr2d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) → ( 𝑃 ‘ 𝑋 ) = ( 𝑀 ‘ ( ⊥ ‘ ( 𝑈 ‘ 𝑋 ) ) ) ) |