Metamath Proof Explorer


Theorem polvalN

Description: Value of the projective subspace polarity function. (Contributed by NM, 23-Oct-2011) (New usage is discouraged.)

Ref Expression
Hypotheses polfval.o = ( oc ‘ 𝐾 )
polfval.a 𝐴 = ( Atoms ‘ 𝐾 )
polfval.m 𝑀 = ( pmap ‘ 𝐾 )
polfval.p 𝑃 = ( ⊥𝑃𝐾 )
Assertion polvalN ( ( 𝐾𝐵𝑋𝐴 ) → ( 𝑃𝑋 ) = ( 𝐴 𝑝𝑋 ( 𝑀 ‘ ( 𝑝 ) ) ) )

Proof

Step Hyp Ref Expression
1 polfval.o = ( oc ‘ 𝐾 )
2 polfval.a 𝐴 = ( Atoms ‘ 𝐾 )
3 polfval.m 𝑀 = ( pmap ‘ 𝐾 )
4 polfval.p 𝑃 = ( ⊥𝑃𝐾 )
5 2 fvexi 𝐴 ∈ V
6 5 elpw2 ( 𝑋 ∈ 𝒫 𝐴𝑋𝐴 )
7 1 2 3 4 polfvalN ( 𝐾𝐵𝑃 = ( 𝑚 ∈ 𝒫 𝐴 ↦ ( 𝐴 𝑝𝑚 ( 𝑀 ‘ ( 𝑝 ) ) ) ) )
8 7 fveq1d ( 𝐾𝐵 → ( 𝑃𝑋 ) = ( ( 𝑚 ∈ 𝒫 𝐴 ↦ ( 𝐴 𝑝𝑚 ( 𝑀 ‘ ( 𝑝 ) ) ) ) ‘ 𝑋 ) )
9 iineq1 ( 𝑚 = 𝑋 𝑝𝑚 ( 𝑀 ‘ ( 𝑝 ) ) = 𝑝𝑋 ( 𝑀 ‘ ( 𝑝 ) ) )
10 9 ineq2d ( 𝑚 = 𝑋 → ( 𝐴 𝑝𝑚 ( 𝑀 ‘ ( 𝑝 ) ) ) = ( 𝐴 𝑝𝑋 ( 𝑀 ‘ ( 𝑝 ) ) ) )
11 eqid ( 𝑚 ∈ 𝒫 𝐴 ↦ ( 𝐴 𝑝𝑚 ( 𝑀 ‘ ( 𝑝 ) ) ) ) = ( 𝑚 ∈ 𝒫 𝐴 ↦ ( 𝐴 𝑝𝑚 ( 𝑀 ‘ ( 𝑝 ) ) ) )
12 5 inex1 ( 𝐴 𝑝𝑋 ( 𝑀 ‘ ( 𝑝 ) ) ) ∈ V
13 10 11 12 fvmpt ( 𝑋 ∈ 𝒫 𝐴 → ( ( 𝑚 ∈ 𝒫 𝐴 ↦ ( 𝐴 𝑝𝑚 ( 𝑀 ‘ ( 𝑝 ) ) ) ) ‘ 𝑋 ) = ( 𝐴 𝑝𝑋 ( 𝑀 ‘ ( 𝑝 ) ) ) )
14 8 13 sylan9eq ( ( 𝐾𝐵𝑋 ∈ 𝒫 𝐴 ) → ( 𝑃𝑋 ) = ( 𝐴 𝑝𝑋 ( 𝑀 ‘ ( 𝑝 ) ) ) )
15 6 14 sylan2br ( ( 𝐾𝐵𝑋𝐴 ) → ( 𝑃𝑋 ) = ( 𝐴 𝑝𝑋 ( 𝑀 ‘ ( 𝑝 ) ) ) )