Step |
Hyp |
Ref |
Expression |
1 |
|
polfval.o |
⊢ ⊥ = ( oc ‘ 𝐾 ) |
2 |
|
polfval.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
3 |
|
polfval.m |
⊢ 𝑀 = ( pmap ‘ 𝐾 ) |
4 |
|
polfval.p |
⊢ 𝑃 = ( ⊥𝑃 ‘ 𝐾 ) |
5 |
2
|
fvexi |
⊢ 𝐴 ∈ V |
6 |
5
|
elpw2 |
⊢ ( 𝑋 ∈ 𝒫 𝐴 ↔ 𝑋 ⊆ 𝐴 ) |
7 |
1 2 3 4
|
polfvalN |
⊢ ( 𝐾 ∈ 𝐵 → 𝑃 = ( 𝑚 ∈ 𝒫 𝐴 ↦ ( 𝐴 ∩ ∩ 𝑝 ∈ 𝑚 ( 𝑀 ‘ ( ⊥ ‘ 𝑝 ) ) ) ) ) |
8 |
7
|
fveq1d |
⊢ ( 𝐾 ∈ 𝐵 → ( 𝑃 ‘ 𝑋 ) = ( ( 𝑚 ∈ 𝒫 𝐴 ↦ ( 𝐴 ∩ ∩ 𝑝 ∈ 𝑚 ( 𝑀 ‘ ( ⊥ ‘ 𝑝 ) ) ) ) ‘ 𝑋 ) ) |
9 |
|
iineq1 |
⊢ ( 𝑚 = 𝑋 → ∩ 𝑝 ∈ 𝑚 ( 𝑀 ‘ ( ⊥ ‘ 𝑝 ) ) = ∩ 𝑝 ∈ 𝑋 ( 𝑀 ‘ ( ⊥ ‘ 𝑝 ) ) ) |
10 |
9
|
ineq2d |
⊢ ( 𝑚 = 𝑋 → ( 𝐴 ∩ ∩ 𝑝 ∈ 𝑚 ( 𝑀 ‘ ( ⊥ ‘ 𝑝 ) ) ) = ( 𝐴 ∩ ∩ 𝑝 ∈ 𝑋 ( 𝑀 ‘ ( ⊥ ‘ 𝑝 ) ) ) ) |
11 |
|
eqid |
⊢ ( 𝑚 ∈ 𝒫 𝐴 ↦ ( 𝐴 ∩ ∩ 𝑝 ∈ 𝑚 ( 𝑀 ‘ ( ⊥ ‘ 𝑝 ) ) ) ) = ( 𝑚 ∈ 𝒫 𝐴 ↦ ( 𝐴 ∩ ∩ 𝑝 ∈ 𝑚 ( 𝑀 ‘ ( ⊥ ‘ 𝑝 ) ) ) ) |
12 |
5
|
inex1 |
⊢ ( 𝐴 ∩ ∩ 𝑝 ∈ 𝑋 ( 𝑀 ‘ ( ⊥ ‘ 𝑝 ) ) ) ∈ V |
13 |
10 11 12
|
fvmpt |
⊢ ( 𝑋 ∈ 𝒫 𝐴 → ( ( 𝑚 ∈ 𝒫 𝐴 ↦ ( 𝐴 ∩ ∩ 𝑝 ∈ 𝑚 ( 𝑀 ‘ ( ⊥ ‘ 𝑝 ) ) ) ) ‘ 𝑋 ) = ( 𝐴 ∩ ∩ 𝑝 ∈ 𝑋 ( 𝑀 ‘ ( ⊥ ‘ 𝑝 ) ) ) ) |
14 |
8 13
|
sylan9eq |
⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑋 ∈ 𝒫 𝐴 ) → ( 𝑃 ‘ 𝑋 ) = ( 𝐴 ∩ ∩ 𝑝 ∈ 𝑋 ( 𝑀 ‘ ( ⊥ ‘ 𝑝 ) ) ) ) |
15 |
6 14
|
sylan2br |
⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ) → ( 𝑃 ‘ 𝑋 ) = ( 𝐴 ∩ ∩ 𝑝 ∈ 𝑋 ( 𝑀 ‘ ( ⊥ ‘ 𝑝 ) ) ) ) |