Step |
Hyp |
Ref |
Expression |
1 |
|
poml6.c |
⊢ 𝐶 = ( PSubCl ‘ 𝐾 ) |
2 |
|
poml6.p |
⊢ ⊥ = ( ⊥𝑃 ‘ 𝐾 ) |
3 |
|
simpl1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ∧ 𝑋 ⊆ 𝑌 ) → 𝐾 ∈ HL ) |
4 |
|
simpl2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ∧ 𝑋 ⊆ 𝑌 ) → 𝑋 ∈ 𝐶 ) |
5 |
|
eqid |
⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) |
6 |
5 1
|
psubclssatN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ) → 𝑋 ⊆ ( Atoms ‘ 𝐾 ) ) |
7 |
3 4 6
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ∧ 𝑋 ⊆ 𝑌 ) → 𝑋 ⊆ ( Atoms ‘ 𝐾 ) ) |
8 |
|
simpl3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ∧ 𝑋 ⊆ 𝑌 ) → 𝑌 ∈ 𝐶 ) |
9 |
5 1
|
psubclssatN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ) → 𝑌 ⊆ ( Atoms ‘ 𝐾 ) ) |
10 |
3 8 9
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ∧ 𝑋 ⊆ 𝑌 ) → 𝑌 ⊆ ( Atoms ‘ 𝐾 ) ) |
11 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ∧ 𝑋 ⊆ 𝑌 ) → 𝑋 ⊆ 𝑌 ) |
12 |
2 1
|
psubcli2N |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) = 𝑌 ) |
13 |
3 8 12
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ∧ 𝑋 ⊆ 𝑌 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) = 𝑌 ) |
14 |
5 2
|
poml4N |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ ( Atoms ‘ 𝐾 ) ∧ 𝑌 ⊆ ( Atoms ‘ 𝐾 ) ) → ( ( 𝑋 ⊆ 𝑌 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) = 𝑌 ) → ( ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∩ 𝑌 ) ) ∩ 𝑌 ) = ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) ) |
15 |
14
|
imp |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ ( Atoms ‘ 𝐾 ) ∧ 𝑌 ⊆ ( Atoms ‘ 𝐾 ) ) ∧ ( 𝑋 ⊆ 𝑌 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) = 𝑌 ) ) → ( ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∩ 𝑌 ) ) ∩ 𝑌 ) = ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) |
16 |
3 7 10 11 13 15
|
syl32anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ∧ 𝑋 ⊆ 𝑌 ) → ( ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∩ 𝑌 ) ) ∩ 𝑌 ) = ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) |
17 |
2 1
|
psubcli2N |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) |
18 |
3 4 17
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ∧ 𝑋 ⊆ 𝑌 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) |
19 |
16 18
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ) ∧ 𝑋 ⊆ 𝑌 ) → ( ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∩ 𝑌 ) ) ∩ 𝑌 ) = 𝑋 ) |