| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							simp2 | 
							⊢ ( ( ( Rel  𝑅  ∧  𝑅  Po  𝑋 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝐴 𝑅 𝐵  ∧  𝐶 𝑅 𝐷 ) )  →  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							an3 | 
							⊢ ( ( ( Rel  𝑅  ∧  𝑅  Po  𝑋 )  ∧  ( 𝐴 𝑅 𝐵  ∧  𝐶 𝑅 𝐷 ) )  →  ( Rel  𝑅  ∧  𝐶 𝑅 𝐷 ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							3adant2 | 
							⊢ ( ( ( Rel  𝑅  ∧  𝑅  Po  𝑋 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝐴 𝑅 𝐵  ∧  𝐶 𝑅 𝐷 ) )  →  ( Rel  𝑅  ∧  𝐶 𝑅 𝐷 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							brrelex12 | 
							⊢ ( ( Rel  𝑅  ∧  𝐶 𝑅 𝐷 )  →  ( 𝐶  ∈  V  ∧  𝐷  ∈  V ) )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							syl | 
							⊢ ( ( ( Rel  𝑅  ∧  𝑅  Po  𝑋 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝐴 𝑅 𝐵  ∧  𝐶 𝑅 𝐷 ) )  →  ( 𝐶  ∈  V  ∧  𝐷  ∈  V ) )  | 
						
						
							| 6 | 
							
								
							 | 
							preq12bg | 
							⊢ ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝐶  ∈  V  ∧  𝐷  ∈  V ) )  →  ( { 𝐴 ,  𝐵 }  =  { 𝐶 ,  𝐷 }  ↔  ( ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 )  ∨  ( 𝐴  =  𝐷  ∧  𝐵  =  𝐶 ) ) ) )  | 
						
						
							| 7 | 
							
								1 5 6
							 | 
							syl2anc | 
							⊢ ( ( ( Rel  𝑅  ∧  𝑅  Po  𝑋 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝐴 𝑅 𝐵  ∧  𝐶 𝑅 𝐷 ) )  →  ( { 𝐴 ,  𝐵 }  =  { 𝐶 ,  𝐷 }  ↔  ( ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 )  ∨  ( 𝐴  =  𝐷  ∧  𝐵  =  𝐶 ) ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							idd | 
							⊢ ( ( ( Rel  𝑅  ∧  𝑅  Po  𝑋 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝐴 𝑅 𝐵  ∧  𝐶 𝑅 𝐷 ) )  →  ( ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 )  →  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							breq12 | 
							⊢ ( ( 𝐵  =  𝐶  ∧  𝐴  =  𝐷 )  →  ( 𝐵 𝑅 𝐴  ↔  𝐶 𝑅 𝐷 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							ancoms | 
							⊢ ( ( 𝐴  =  𝐷  ∧  𝐵  =  𝐶 )  →  ( 𝐵 𝑅 𝐴  ↔  𝐶 𝑅 𝐷 ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							bicomd | 
							⊢ ( ( 𝐴  =  𝐷  ∧  𝐵  =  𝐶 )  →  ( 𝐶 𝑅 𝐷  ↔  𝐵 𝑅 𝐴 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							anbi2d | 
							⊢ ( ( 𝐴  =  𝐷  ∧  𝐵  =  𝐶 )  →  ( ( 𝐴 𝑅 𝐵  ∧  𝐶 𝑅 𝐷 )  ↔  ( 𝐴 𝑅 𝐵  ∧  𝐵 𝑅 𝐴 ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							po2nr | 
							⊢ ( ( 𝑅  Po  𝑋  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  ¬  ( 𝐴 𝑅 𝐵  ∧  𝐵 𝑅 𝐴 ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							adantll | 
							⊢ ( ( ( Rel  𝑅  ∧  𝑅  Po  𝑋 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  ¬  ( 𝐴 𝑅 𝐵  ∧  𝐵 𝑅 𝐴 ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							pm2.21d | 
							⊢ ( ( ( Rel  𝑅  ∧  𝑅  Po  𝑋 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  ( ( 𝐴 𝑅 𝐵  ∧  𝐵 𝑅 𝐴 )  →  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 ) ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							ex | 
							⊢ ( ( Rel  𝑅  ∧  𝑅  Po  𝑋 )  →  ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( 𝐴 𝑅 𝐵  ∧  𝐵 𝑅 𝐴 )  →  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 ) ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							com13 | 
							⊢ ( ( 𝐴 𝑅 𝐵  ∧  𝐵 𝑅 𝐴 )  →  ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( Rel  𝑅  ∧  𝑅  Po  𝑋 )  →  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 ) ) ) )  | 
						
						
							| 18 | 
							
								12 17
							 | 
							biimtrdi | 
							⊢ ( ( 𝐴  =  𝐷  ∧  𝐵  =  𝐶 )  →  ( ( 𝐴 𝑅 𝐵  ∧  𝐶 𝑅 𝐷 )  →  ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( Rel  𝑅  ∧  𝑅  Po  𝑋 )  →  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 ) ) ) ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							com23 | 
							⊢ ( ( 𝐴  =  𝐷  ∧  𝐵  =  𝐶 )  →  ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( 𝐴 𝑅 𝐵  ∧  𝐶 𝑅 𝐷 )  →  ( ( Rel  𝑅  ∧  𝑅  Po  𝑋 )  →  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 ) ) ) ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							com14 | 
							⊢ ( ( Rel  𝑅  ∧  𝑅  Po  𝑋 )  →  ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( 𝐴 𝑅 𝐵  ∧  𝐶 𝑅 𝐷 )  →  ( ( 𝐴  =  𝐷  ∧  𝐵  =  𝐶 )  →  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 ) ) ) ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							3imp | 
							⊢ ( ( ( Rel  𝑅  ∧  𝑅  Po  𝑋 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝐴 𝑅 𝐵  ∧  𝐶 𝑅 𝐷 ) )  →  ( ( 𝐴  =  𝐷  ∧  𝐵  =  𝐶 )  →  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 ) ) )  | 
						
						
							| 22 | 
							
								8 21
							 | 
							jaod | 
							⊢ ( ( ( Rel  𝑅  ∧  𝑅  Po  𝑋 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝐴 𝑅 𝐵  ∧  𝐶 𝑅 𝐷 ) )  →  ( ( ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 )  ∨  ( 𝐴  =  𝐷  ∧  𝐵  =  𝐶 ) )  →  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 ) ) )  | 
						
						
							| 23 | 
							
								
							 | 
							orc | 
							⊢ ( ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 )  →  ( ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 )  ∨  ( 𝐴  =  𝐷  ∧  𝐵  =  𝐶 ) ) )  | 
						
						
							| 24 | 
							
								22 23
							 | 
							impbid1 | 
							⊢ ( ( ( Rel  𝑅  ∧  𝑅  Po  𝑋 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝐴 𝑅 𝐵  ∧  𝐶 𝑅 𝐷 ) )  →  ( ( ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 )  ∨  ( 𝐴  =  𝐷  ∧  𝐵  =  𝐶 ) )  ↔  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 ) ) )  | 
						
						
							| 25 | 
							
								7 24
							 | 
							bitrd | 
							⊢ ( ( ( Rel  𝑅  ∧  𝑅  Po  𝑋 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝐴 𝑅 𝐵  ∧  𝐶 𝑅 𝐷 ) )  →  ( { 𝐴 ,  𝐵 }  =  { 𝐶 ,  𝐷 }  ↔  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 ) ) )  |