Metamath Proof Explorer


Theorem porpss

Description: Every class is partially ordered by proper subsets. (Contributed by Stefan O'Rear, 2-Nov-2014)

Ref Expression
Assertion porpss [] Po 𝐴

Proof

Step Hyp Ref Expression
1 pssirr ¬ 𝑥𝑥
2 psstr ( ( 𝑥𝑦𝑦𝑧 ) → 𝑥𝑧 )
3 vex 𝑥 ∈ V
4 3 brrpss ( 𝑥 [] 𝑥𝑥𝑥 )
5 4 notbii ( ¬ 𝑥 [] 𝑥 ↔ ¬ 𝑥𝑥 )
6 vex 𝑦 ∈ V
7 6 brrpss ( 𝑥 [] 𝑦𝑥𝑦 )
8 vex 𝑧 ∈ V
9 8 brrpss ( 𝑦 [] 𝑧𝑦𝑧 )
10 7 9 anbi12i ( ( 𝑥 [] 𝑦𝑦 [] 𝑧 ) ↔ ( 𝑥𝑦𝑦𝑧 ) )
11 8 brrpss ( 𝑥 [] 𝑧𝑥𝑧 )
12 10 11 imbi12i ( ( ( 𝑥 [] 𝑦𝑦 [] 𝑧 ) → 𝑥 [] 𝑧 ) ↔ ( ( 𝑥𝑦𝑦𝑧 ) → 𝑥𝑧 ) )
13 5 12 anbi12i ( ( ¬ 𝑥 [] 𝑥 ∧ ( ( 𝑥 [] 𝑦𝑦 [] 𝑧 ) → 𝑥 [] 𝑧 ) ) ↔ ( ¬ 𝑥𝑥 ∧ ( ( 𝑥𝑦𝑦𝑧 ) → 𝑥𝑧 ) ) )
14 1 2 13 mpbir2an ( ¬ 𝑥 [] 𝑥 ∧ ( ( 𝑥 [] 𝑦𝑦 [] 𝑧 ) → 𝑥 [] 𝑧 ) )
15 14 rgenw 𝑧𝐴 ( ¬ 𝑥 [] 𝑥 ∧ ( ( 𝑥 [] 𝑦𝑦 [] 𝑧 ) → 𝑥 [] 𝑧 ) )
16 15 rgen2w 𝑥𝐴𝑦𝐴𝑧𝐴 ( ¬ 𝑥 [] 𝑥 ∧ ( ( 𝑥 [] 𝑦𝑦 [] 𝑧 ) → 𝑥 [] 𝑧 ) )
17 df-po ( [] Po 𝐴 ↔ ∀ 𝑥𝐴𝑦𝐴𝑧𝐴 ( ¬ 𝑥 [] 𝑥 ∧ ( ( 𝑥 [] 𝑦𝑦 [] 𝑧 ) → 𝑥 [] 𝑧 ) ) )
18 16 17 mpbir [] Po 𝐴