| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pssirr |
⊢ ¬ 𝑥 ⊊ 𝑥 |
| 2 |
|
psstr |
⊢ ( ( 𝑥 ⊊ 𝑦 ∧ 𝑦 ⊊ 𝑧 ) → 𝑥 ⊊ 𝑧 ) |
| 3 |
|
vex |
⊢ 𝑥 ∈ V |
| 4 |
3
|
brrpss |
⊢ ( 𝑥 [⊊] 𝑥 ↔ 𝑥 ⊊ 𝑥 ) |
| 5 |
4
|
notbii |
⊢ ( ¬ 𝑥 [⊊] 𝑥 ↔ ¬ 𝑥 ⊊ 𝑥 ) |
| 6 |
|
vex |
⊢ 𝑦 ∈ V |
| 7 |
6
|
brrpss |
⊢ ( 𝑥 [⊊] 𝑦 ↔ 𝑥 ⊊ 𝑦 ) |
| 8 |
|
vex |
⊢ 𝑧 ∈ V |
| 9 |
8
|
brrpss |
⊢ ( 𝑦 [⊊] 𝑧 ↔ 𝑦 ⊊ 𝑧 ) |
| 10 |
7 9
|
anbi12i |
⊢ ( ( 𝑥 [⊊] 𝑦 ∧ 𝑦 [⊊] 𝑧 ) ↔ ( 𝑥 ⊊ 𝑦 ∧ 𝑦 ⊊ 𝑧 ) ) |
| 11 |
8
|
brrpss |
⊢ ( 𝑥 [⊊] 𝑧 ↔ 𝑥 ⊊ 𝑧 ) |
| 12 |
10 11
|
imbi12i |
⊢ ( ( ( 𝑥 [⊊] 𝑦 ∧ 𝑦 [⊊] 𝑧 ) → 𝑥 [⊊] 𝑧 ) ↔ ( ( 𝑥 ⊊ 𝑦 ∧ 𝑦 ⊊ 𝑧 ) → 𝑥 ⊊ 𝑧 ) ) |
| 13 |
5 12
|
anbi12i |
⊢ ( ( ¬ 𝑥 [⊊] 𝑥 ∧ ( ( 𝑥 [⊊] 𝑦 ∧ 𝑦 [⊊] 𝑧 ) → 𝑥 [⊊] 𝑧 ) ) ↔ ( ¬ 𝑥 ⊊ 𝑥 ∧ ( ( 𝑥 ⊊ 𝑦 ∧ 𝑦 ⊊ 𝑧 ) → 𝑥 ⊊ 𝑧 ) ) ) |
| 14 |
1 2 13
|
mpbir2an |
⊢ ( ¬ 𝑥 [⊊] 𝑥 ∧ ( ( 𝑥 [⊊] 𝑦 ∧ 𝑦 [⊊] 𝑧 ) → 𝑥 [⊊] 𝑧 ) ) |
| 15 |
14
|
rgenw |
⊢ ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑥 [⊊] 𝑥 ∧ ( ( 𝑥 [⊊] 𝑦 ∧ 𝑦 [⊊] 𝑧 ) → 𝑥 [⊊] 𝑧 ) ) |
| 16 |
15
|
rgen2w |
⊢ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑥 [⊊] 𝑥 ∧ ( ( 𝑥 [⊊] 𝑦 ∧ 𝑦 [⊊] 𝑧 ) → 𝑥 [⊊] 𝑧 ) ) |
| 17 |
|
df-po |
⊢ ( [⊊] Po 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑥 [⊊] 𝑥 ∧ ( ( 𝑥 [⊊] 𝑦 ∧ 𝑦 [⊊] 𝑧 ) → 𝑥 [⊊] 𝑧 ) ) ) |
| 18 |
16 17
|
mpbir |
⊢ [⊊] Po 𝐴 |