Metamath Proof Explorer


Theorem posdifd

Description: Comparison of two numbers whose difference is positive. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses leidd.1 ( 𝜑𝐴 ∈ ℝ )
ltnegd.2 ( 𝜑𝐵 ∈ ℝ )
Assertion posdifd ( 𝜑 → ( 𝐴 < 𝐵 ↔ 0 < ( 𝐵𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 leidd.1 ( 𝜑𝐴 ∈ ℝ )
2 ltnegd.2 ( 𝜑𝐵 ∈ ℝ )
3 posdif ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ 0 < ( 𝐵𝐴 ) ) )
4 1 2 3 syl2anc ( 𝜑 → ( 𝐴 < 𝐵 ↔ 0 < ( 𝐵𝐴 ) ) )