Metamath Proof Explorer


Theorem posdifi

Description: Comparison of two numbers whose difference is positive. (Contributed by NM, 19-Aug-2001)

Ref Expression
Hypotheses lt2.1 𝐴 ∈ ℝ
lt2.2 𝐵 ∈ ℝ
Assertion posdifi ( 𝐴 < 𝐵 ↔ 0 < ( 𝐵𝐴 ) )

Proof

Step Hyp Ref Expression
1 lt2.1 𝐴 ∈ ℝ
2 lt2.2 𝐵 ∈ ℝ
3 posdif ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ 0 < ( 𝐵𝐴 ) ) )
4 1 2 3 mp2an ( 𝐴 < 𝐵 ↔ 0 < ( 𝐵𝐴 ) )