Metamath Proof Explorer
Description: Comparison of two numbers whose difference is positive. (Contributed by NM, 19-Aug-2001)
|
|
Ref |
Expression |
|
Hypotheses |
lt2.1 |
⊢ 𝐴 ∈ ℝ |
|
|
lt2.2 |
⊢ 𝐵 ∈ ℝ |
|
Assertion |
posdifi |
⊢ ( 𝐴 < 𝐵 ↔ 0 < ( 𝐵 − 𝐴 ) ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lt2.1 |
⊢ 𝐴 ∈ ℝ |
| 2 |
|
lt2.2 |
⊢ 𝐵 ∈ ℝ |
| 3 |
|
posdif |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ 0 < ( 𝐵 − 𝐴 ) ) ) |
| 4 |
1 2 3
|
mp2an |
⊢ ( 𝐴 < 𝐵 ↔ 0 < ( 𝐵 − 𝐴 ) ) |