Metamath Proof Explorer


Theorem posdifsd

Description: Comparison of two surreals whose difference is positive. (Contributed by Scott Fenton, 10-Mar-2025)

Ref Expression
Hypotheses posdifsd.1 ( 𝜑𝐴 No )
posdifsd.2 ( 𝜑𝐵 No )
Assertion posdifsd ( 𝜑 → ( 𝐴 <s 𝐵 ↔ 0s <s ( 𝐵 -s 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 posdifsd.1 ( 𝜑𝐴 No )
2 posdifsd.2 ( 𝜑𝐵 No )
3 0sno 0s No
4 3 a1i ( 𝜑 → 0s No )
5 2 1 subscld ( 𝜑 → ( 𝐵 -s 𝐴 ) ∈ No )
6 4 5 1 sltadd1d ( 𝜑 → ( 0s <s ( 𝐵 -s 𝐴 ) ↔ ( 0s +s 𝐴 ) <s ( ( 𝐵 -s 𝐴 ) +s 𝐴 ) ) )
7 addslid ( 𝐴 No → ( 0s +s 𝐴 ) = 𝐴 )
8 1 7 syl ( 𝜑 → ( 0s +s 𝐴 ) = 𝐴 )
9 npcans ( ( 𝐵 No 𝐴 No ) → ( ( 𝐵 -s 𝐴 ) +s 𝐴 ) = 𝐵 )
10 2 1 9 syl2anc ( 𝜑 → ( ( 𝐵 -s 𝐴 ) +s 𝐴 ) = 𝐵 )
11 8 10 breq12d ( 𝜑 → ( ( 0s +s 𝐴 ) <s ( ( 𝐵 -s 𝐴 ) +s 𝐴 ) ↔ 𝐴 <s 𝐵 ) )
12 6 11 bitr2d ( 𝜑 → ( 𝐴 <s 𝐵 ↔ 0s <s ( 𝐵 -s 𝐴 ) ) )