| Step | Hyp | Ref | Expression | 
						
							| 1 |  | posglbdg.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 2 |  | posglbdg.b | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ 𝐾 ) ) | 
						
							| 3 |  | posglbdg.g | ⊢ ( 𝜑  →  𝐺  =  ( glb ‘ 𝐾 ) ) | 
						
							| 4 |  | posglbdg.k | ⊢ ( 𝜑  →  𝐾  ∈  Poset ) | 
						
							| 5 |  | posglbdg.s | ⊢ ( 𝜑  →  𝑆  ⊆  𝐵 ) | 
						
							| 6 |  | posglbdg.t | ⊢ ( 𝜑  →  𝑇  ∈  𝐵 ) | 
						
							| 7 |  | posglbdg.lb | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑆 )  →  𝑇  ≤  𝑥 ) | 
						
							| 8 |  | posglbdg.gt | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵  ∧  ∀ 𝑥  ∈  𝑆 𝑦  ≤  𝑥 )  →  𝑦  ≤  𝑇 ) | 
						
							| 9 |  | eqid | ⊢ ( ODual ‘ 𝐾 )  =  ( ODual ‘ 𝐾 ) | 
						
							| 10 | 9 1 | oduleval | ⊢ ◡  ≤   =  ( le ‘ ( ODual ‘ 𝐾 ) ) | 
						
							| 11 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 12 | 9 11 | odubas | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ ( ODual ‘ 𝐾 ) ) | 
						
							| 13 | 2 12 | eqtrdi | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ ( ODual ‘ 𝐾 ) ) ) | 
						
							| 14 |  | eqid | ⊢ ( glb ‘ 𝐾 )  =  ( glb ‘ 𝐾 ) | 
						
							| 15 | 9 14 | odulub | ⊢ ( 𝐾  ∈  Poset  →  ( glb ‘ 𝐾 )  =  ( lub ‘ ( ODual ‘ 𝐾 ) ) ) | 
						
							| 16 | 4 15 | syl | ⊢ ( 𝜑  →  ( glb ‘ 𝐾 )  =  ( lub ‘ ( ODual ‘ 𝐾 ) ) ) | 
						
							| 17 | 3 16 | eqtrd | ⊢ ( 𝜑  →  𝐺  =  ( lub ‘ ( ODual ‘ 𝐾 ) ) ) | 
						
							| 18 | 9 | odupos | ⊢ ( 𝐾  ∈  Poset  →  ( ODual ‘ 𝐾 )  ∈  Poset ) | 
						
							| 19 | 4 18 | syl | ⊢ ( 𝜑  →  ( ODual ‘ 𝐾 )  ∈  Poset ) | 
						
							| 20 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 21 |  | brcnvg | ⊢ ( ( 𝑥  ∈  V  ∧  𝑇  ∈  𝐵 )  →  ( 𝑥 ◡  ≤  𝑇  ↔  𝑇  ≤  𝑥 ) ) | 
						
							| 22 | 20 6 21 | sylancr | ⊢ ( 𝜑  →  ( 𝑥 ◡  ≤  𝑇  ↔  𝑇  ≤  𝑥 ) ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑆 )  →  ( 𝑥 ◡  ≤  𝑇  ↔  𝑇  ≤  𝑥 ) ) | 
						
							| 24 | 7 23 | mpbird | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑆 )  →  𝑥 ◡  ≤  𝑇 ) | 
						
							| 25 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 26 | 20 25 | brcnv | ⊢ ( 𝑥 ◡  ≤  𝑦  ↔  𝑦  ≤  𝑥 ) | 
						
							| 27 | 26 | ralbii | ⊢ ( ∀ 𝑥  ∈  𝑆 𝑥 ◡  ≤  𝑦  ↔  ∀ 𝑥  ∈  𝑆 𝑦  ≤  𝑥 ) | 
						
							| 28 | 27 8 | syl3an3b | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵  ∧  ∀ 𝑥  ∈  𝑆 𝑥 ◡  ≤  𝑦 )  →  𝑦  ≤  𝑇 ) | 
						
							| 29 |  | brcnvg | ⊢ ( ( 𝑇  ∈  𝐵  ∧  𝑦  ∈  V )  →  ( 𝑇 ◡  ≤  𝑦  ↔  𝑦  ≤  𝑇 ) ) | 
						
							| 30 | 6 25 29 | sylancl | ⊢ ( 𝜑  →  ( 𝑇 ◡  ≤  𝑦  ↔  𝑦  ≤  𝑇 ) ) | 
						
							| 31 | 30 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵  ∧  ∀ 𝑥  ∈  𝑆 𝑥 ◡  ≤  𝑦 )  →  ( 𝑇 ◡  ≤  𝑦  ↔  𝑦  ≤  𝑇 ) ) | 
						
							| 32 | 28 31 | mpbird | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵  ∧  ∀ 𝑥  ∈  𝑆 𝑥 ◡  ≤  𝑦 )  →  𝑇 ◡  ≤  𝑦 ) | 
						
							| 33 | 10 13 17 19 5 6 24 32 | poslubdg | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝑆 )  =  𝑇 ) |