Step |
Hyp |
Ref |
Expression |
1 |
|
poslubmo.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
poslubmo.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
3 |
|
simprrl |
⊢ ( ( ( ( 𝐾 ∈ Poset ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ∧ ( ∀ 𝑦 ∈ 𝑆 𝑤 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑤 ) ) ) ) → ∀ 𝑦 ∈ 𝑆 𝑤 ≤ 𝑦 ) |
4 |
|
breq1 |
⊢ ( 𝑧 = 𝑤 → ( 𝑧 ≤ 𝑦 ↔ 𝑤 ≤ 𝑦 ) ) |
5 |
4
|
ralbidv |
⊢ ( 𝑧 = 𝑤 → ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 ↔ ∀ 𝑦 ∈ 𝑆 𝑤 ≤ 𝑦 ) ) |
6 |
|
breq1 |
⊢ ( 𝑧 = 𝑤 → ( 𝑧 ≤ 𝑥 ↔ 𝑤 ≤ 𝑥 ) ) |
7 |
5 6
|
imbi12d |
⊢ ( 𝑧 = 𝑤 → ( ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ↔ ( ∀ 𝑦 ∈ 𝑆 𝑤 ≤ 𝑦 → 𝑤 ≤ 𝑥 ) ) ) |
8 |
|
simprlr |
⊢ ( ( ( ( 𝐾 ∈ Poset ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ∧ ( ∀ 𝑦 ∈ 𝑆 𝑤 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑤 ) ) ) ) → ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) |
9 |
|
simplrr |
⊢ ( ( ( ( 𝐾 ∈ Poset ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ∧ ( ∀ 𝑦 ∈ 𝑆 𝑤 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑤 ) ) ) ) → 𝑤 ∈ 𝐵 ) |
10 |
7 8 9
|
rspcdva |
⊢ ( ( ( ( 𝐾 ∈ Poset ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ∧ ( ∀ 𝑦 ∈ 𝑆 𝑤 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑤 ) ) ) ) → ( ∀ 𝑦 ∈ 𝑆 𝑤 ≤ 𝑦 → 𝑤 ≤ 𝑥 ) ) |
11 |
3 10
|
mpd |
⊢ ( ( ( ( 𝐾 ∈ Poset ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ∧ ( ∀ 𝑦 ∈ 𝑆 𝑤 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑤 ) ) ) ) → 𝑤 ≤ 𝑥 ) |
12 |
|
simprll |
⊢ ( ( ( ( 𝐾 ∈ Poset ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ∧ ( ∀ 𝑦 ∈ 𝑆 𝑤 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑤 ) ) ) ) → ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) |
13 |
|
breq1 |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 ≤ 𝑦 ↔ 𝑥 ≤ 𝑦 ) ) |
14 |
13
|
ralbidv |
⊢ ( 𝑧 = 𝑥 → ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 ↔ ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) ) |
15 |
|
breq1 |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 ≤ 𝑤 ↔ 𝑥 ≤ 𝑤 ) ) |
16 |
14 15
|
imbi12d |
⊢ ( 𝑧 = 𝑥 → ( ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑤 ) ↔ ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ 𝑤 ) ) ) |
17 |
|
simprrr |
⊢ ( ( ( ( 𝐾 ∈ Poset ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ∧ ( ∀ 𝑦 ∈ 𝑆 𝑤 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑤 ) ) ) ) → ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑤 ) ) |
18 |
|
simplrl |
⊢ ( ( ( ( 𝐾 ∈ Poset ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ∧ ( ∀ 𝑦 ∈ 𝑆 𝑤 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑤 ) ) ) ) → 𝑥 ∈ 𝐵 ) |
19 |
16 17 18
|
rspcdva |
⊢ ( ( ( ( 𝐾 ∈ Poset ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ∧ ( ∀ 𝑦 ∈ 𝑆 𝑤 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑤 ) ) ) ) → ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ 𝑤 ) ) |
20 |
12 19
|
mpd |
⊢ ( ( ( ( 𝐾 ∈ Poset ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ∧ ( ∀ 𝑦 ∈ 𝑆 𝑤 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑤 ) ) ) ) → 𝑥 ≤ 𝑤 ) |
21 |
|
ancom |
⊢ ( ( 𝑤 ≤ 𝑥 ∧ 𝑥 ≤ 𝑤 ) ↔ ( 𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑥 ) ) |
22 |
2 1
|
posasymb |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑥 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) → ( ( 𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑥 ) ↔ 𝑥 = 𝑤 ) ) |
23 |
21 22
|
syl5bb |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑥 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) → ( ( 𝑤 ≤ 𝑥 ∧ 𝑥 ≤ 𝑤 ) ↔ 𝑥 = 𝑤 ) ) |
24 |
23
|
3expb |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( 𝑤 ≤ 𝑥 ∧ 𝑥 ≤ 𝑤 ) ↔ 𝑥 = 𝑤 ) ) |
25 |
24
|
ad4ant13 |
⊢ ( ( ( ( 𝐾 ∈ Poset ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ∧ ( ∀ 𝑦 ∈ 𝑆 𝑤 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑤 ) ) ) ) → ( ( 𝑤 ≤ 𝑥 ∧ 𝑥 ≤ 𝑤 ) ↔ 𝑥 = 𝑤 ) ) |
26 |
11 20 25
|
mpbi2and |
⊢ ( ( ( ( 𝐾 ∈ Poset ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ∧ ( ∀ 𝑦 ∈ 𝑆 𝑤 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑤 ) ) ) ) → 𝑥 = 𝑤 ) |
27 |
26
|
ex |
⊢ ( ( ( 𝐾 ∈ Poset ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ∧ ( ∀ 𝑦 ∈ 𝑆 𝑤 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑤 ) ) ) → 𝑥 = 𝑤 ) ) |
28 |
27
|
ralrimivva |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑆 ⊆ 𝐵 ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( ( ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ∧ ( ∀ 𝑦 ∈ 𝑆 𝑤 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑤 ) ) ) → 𝑥 = 𝑤 ) ) |
29 |
|
breq1 |
⊢ ( 𝑥 = 𝑤 → ( 𝑥 ≤ 𝑦 ↔ 𝑤 ≤ 𝑦 ) ) |
30 |
29
|
ralbidv |
⊢ ( 𝑥 = 𝑤 → ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ↔ ∀ 𝑦 ∈ 𝑆 𝑤 ≤ 𝑦 ) ) |
31 |
|
breq2 |
⊢ ( 𝑥 = 𝑤 → ( 𝑧 ≤ 𝑥 ↔ 𝑧 ≤ 𝑤 ) ) |
32 |
31
|
imbi2d |
⊢ ( 𝑥 = 𝑤 → ( ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ↔ ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑤 ) ) ) |
33 |
32
|
ralbidv |
⊢ ( 𝑥 = 𝑤 → ( ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ↔ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑤 ) ) ) |
34 |
30 33
|
anbi12d |
⊢ ( 𝑥 = 𝑤 → ( ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ↔ ( ∀ 𝑦 ∈ 𝑆 𝑤 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑤 ) ) ) ) |
35 |
34
|
rmo4 |
⊢ ( ∃* 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( ( ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ∧ ( ∀ 𝑦 ∈ 𝑆 𝑤 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑤 ) ) ) → 𝑥 = 𝑤 ) ) |
36 |
28 35
|
sylibr |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑆 ⊆ 𝐵 ) → ∃* 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ) |