| Step | Hyp | Ref | Expression | 
						
							| 1 |  | poslubmo.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 2 |  | poslubmo.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 3 |  | simprrl | ⊢ ( ( ( ( 𝐾  ∈  Poset  ∧  𝑆  ⊆  𝐵 )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ( ( ∀ 𝑦  ∈  𝑆 𝑥  ≤  𝑦  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑧  ≤  𝑦  →  𝑧  ≤  𝑥 ) )  ∧  ( ∀ 𝑦  ∈  𝑆 𝑤  ≤  𝑦  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑧  ≤  𝑦  →  𝑧  ≤  𝑤 ) ) ) )  →  ∀ 𝑦  ∈  𝑆 𝑤  ≤  𝑦 ) | 
						
							| 4 |  | breq1 | ⊢ ( 𝑧  =  𝑤  →  ( 𝑧  ≤  𝑦  ↔  𝑤  ≤  𝑦 ) ) | 
						
							| 5 | 4 | ralbidv | ⊢ ( 𝑧  =  𝑤  →  ( ∀ 𝑦  ∈  𝑆 𝑧  ≤  𝑦  ↔  ∀ 𝑦  ∈  𝑆 𝑤  ≤  𝑦 ) ) | 
						
							| 6 |  | breq1 | ⊢ ( 𝑧  =  𝑤  →  ( 𝑧  ≤  𝑥  ↔  𝑤  ≤  𝑥 ) ) | 
						
							| 7 | 5 6 | imbi12d | ⊢ ( 𝑧  =  𝑤  →  ( ( ∀ 𝑦  ∈  𝑆 𝑧  ≤  𝑦  →  𝑧  ≤  𝑥 )  ↔  ( ∀ 𝑦  ∈  𝑆 𝑤  ≤  𝑦  →  𝑤  ≤  𝑥 ) ) ) | 
						
							| 8 |  | simprlr | ⊢ ( ( ( ( 𝐾  ∈  Poset  ∧  𝑆  ⊆  𝐵 )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ( ( ∀ 𝑦  ∈  𝑆 𝑥  ≤  𝑦  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑧  ≤  𝑦  →  𝑧  ≤  𝑥 ) )  ∧  ( ∀ 𝑦  ∈  𝑆 𝑤  ≤  𝑦  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑧  ≤  𝑦  →  𝑧  ≤  𝑤 ) ) ) )  →  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑧  ≤  𝑦  →  𝑧  ≤  𝑥 ) ) | 
						
							| 9 |  | simplrr | ⊢ ( ( ( ( 𝐾  ∈  Poset  ∧  𝑆  ⊆  𝐵 )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ( ( ∀ 𝑦  ∈  𝑆 𝑥  ≤  𝑦  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑧  ≤  𝑦  →  𝑧  ≤  𝑥 ) )  ∧  ( ∀ 𝑦  ∈  𝑆 𝑤  ≤  𝑦  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑧  ≤  𝑦  →  𝑧  ≤  𝑤 ) ) ) )  →  𝑤  ∈  𝐵 ) | 
						
							| 10 | 7 8 9 | rspcdva | ⊢ ( ( ( ( 𝐾  ∈  Poset  ∧  𝑆  ⊆  𝐵 )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ( ( ∀ 𝑦  ∈  𝑆 𝑥  ≤  𝑦  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑧  ≤  𝑦  →  𝑧  ≤  𝑥 ) )  ∧  ( ∀ 𝑦  ∈  𝑆 𝑤  ≤  𝑦  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑧  ≤  𝑦  →  𝑧  ≤  𝑤 ) ) ) )  →  ( ∀ 𝑦  ∈  𝑆 𝑤  ≤  𝑦  →  𝑤  ≤  𝑥 ) ) | 
						
							| 11 | 3 10 | mpd | ⊢ ( ( ( ( 𝐾  ∈  Poset  ∧  𝑆  ⊆  𝐵 )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ( ( ∀ 𝑦  ∈  𝑆 𝑥  ≤  𝑦  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑧  ≤  𝑦  →  𝑧  ≤  𝑥 ) )  ∧  ( ∀ 𝑦  ∈  𝑆 𝑤  ≤  𝑦  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑧  ≤  𝑦  →  𝑧  ≤  𝑤 ) ) ) )  →  𝑤  ≤  𝑥 ) | 
						
							| 12 |  | simprll | ⊢ ( ( ( ( 𝐾  ∈  Poset  ∧  𝑆  ⊆  𝐵 )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ( ( ∀ 𝑦  ∈  𝑆 𝑥  ≤  𝑦  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑧  ≤  𝑦  →  𝑧  ≤  𝑥 ) )  ∧  ( ∀ 𝑦  ∈  𝑆 𝑤  ≤  𝑦  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑧  ≤  𝑦  →  𝑧  ≤  𝑤 ) ) ) )  →  ∀ 𝑦  ∈  𝑆 𝑥  ≤  𝑦 ) | 
						
							| 13 |  | breq1 | ⊢ ( 𝑧  =  𝑥  →  ( 𝑧  ≤  𝑦  ↔  𝑥  ≤  𝑦 ) ) | 
						
							| 14 | 13 | ralbidv | ⊢ ( 𝑧  =  𝑥  →  ( ∀ 𝑦  ∈  𝑆 𝑧  ≤  𝑦  ↔  ∀ 𝑦  ∈  𝑆 𝑥  ≤  𝑦 ) ) | 
						
							| 15 |  | breq1 | ⊢ ( 𝑧  =  𝑥  →  ( 𝑧  ≤  𝑤  ↔  𝑥  ≤  𝑤 ) ) | 
						
							| 16 | 14 15 | imbi12d | ⊢ ( 𝑧  =  𝑥  →  ( ( ∀ 𝑦  ∈  𝑆 𝑧  ≤  𝑦  →  𝑧  ≤  𝑤 )  ↔  ( ∀ 𝑦  ∈  𝑆 𝑥  ≤  𝑦  →  𝑥  ≤  𝑤 ) ) ) | 
						
							| 17 |  | simprrr | ⊢ ( ( ( ( 𝐾  ∈  Poset  ∧  𝑆  ⊆  𝐵 )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ( ( ∀ 𝑦  ∈  𝑆 𝑥  ≤  𝑦  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑧  ≤  𝑦  →  𝑧  ≤  𝑥 ) )  ∧  ( ∀ 𝑦  ∈  𝑆 𝑤  ≤  𝑦  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑧  ≤  𝑦  →  𝑧  ≤  𝑤 ) ) ) )  →  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑧  ≤  𝑦  →  𝑧  ≤  𝑤 ) ) | 
						
							| 18 |  | simplrl | ⊢ ( ( ( ( 𝐾  ∈  Poset  ∧  𝑆  ⊆  𝐵 )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ( ( ∀ 𝑦  ∈  𝑆 𝑥  ≤  𝑦  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑧  ≤  𝑦  →  𝑧  ≤  𝑥 ) )  ∧  ( ∀ 𝑦  ∈  𝑆 𝑤  ≤  𝑦  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑧  ≤  𝑦  →  𝑧  ≤  𝑤 ) ) ) )  →  𝑥  ∈  𝐵 ) | 
						
							| 19 | 16 17 18 | rspcdva | ⊢ ( ( ( ( 𝐾  ∈  Poset  ∧  𝑆  ⊆  𝐵 )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ( ( ∀ 𝑦  ∈  𝑆 𝑥  ≤  𝑦  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑧  ≤  𝑦  →  𝑧  ≤  𝑥 ) )  ∧  ( ∀ 𝑦  ∈  𝑆 𝑤  ≤  𝑦  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑧  ≤  𝑦  →  𝑧  ≤  𝑤 ) ) ) )  →  ( ∀ 𝑦  ∈  𝑆 𝑥  ≤  𝑦  →  𝑥  ≤  𝑤 ) ) | 
						
							| 20 | 12 19 | mpd | ⊢ ( ( ( ( 𝐾  ∈  Poset  ∧  𝑆  ⊆  𝐵 )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ( ( ∀ 𝑦  ∈  𝑆 𝑥  ≤  𝑦  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑧  ≤  𝑦  →  𝑧  ≤  𝑥 ) )  ∧  ( ∀ 𝑦  ∈  𝑆 𝑤  ≤  𝑦  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑧  ≤  𝑦  →  𝑧  ≤  𝑤 ) ) ) )  →  𝑥  ≤  𝑤 ) | 
						
							| 21 |  | ancom | ⊢ ( ( 𝑤  ≤  𝑥  ∧  𝑥  ≤  𝑤 )  ↔  ( 𝑥  ≤  𝑤  ∧  𝑤  ≤  𝑥 ) ) | 
						
							| 22 | 2 1 | posasymb | ⊢ ( ( 𝐾  ∈  Poset  ∧  𝑥  ∈  𝐵  ∧  𝑤  ∈  𝐵 )  →  ( ( 𝑥  ≤  𝑤  ∧  𝑤  ≤  𝑥 )  ↔  𝑥  =  𝑤 ) ) | 
						
							| 23 | 21 22 | bitrid | ⊢ ( ( 𝐾  ∈  Poset  ∧  𝑥  ∈  𝐵  ∧  𝑤  ∈  𝐵 )  →  ( ( 𝑤  ≤  𝑥  ∧  𝑥  ≤  𝑤 )  ↔  𝑥  =  𝑤 ) ) | 
						
							| 24 | 23 | 3expb | ⊢ ( ( 𝐾  ∈  Poset  ∧  ( 𝑥  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  →  ( ( 𝑤  ≤  𝑥  ∧  𝑥  ≤  𝑤 )  ↔  𝑥  =  𝑤 ) ) | 
						
							| 25 | 24 | ad4ant13 | ⊢ ( ( ( ( 𝐾  ∈  Poset  ∧  𝑆  ⊆  𝐵 )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ( ( ∀ 𝑦  ∈  𝑆 𝑥  ≤  𝑦  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑧  ≤  𝑦  →  𝑧  ≤  𝑥 ) )  ∧  ( ∀ 𝑦  ∈  𝑆 𝑤  ≤  𝑦  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑧  ≤  𝑦  →  𝑧  ≤  𝑤 ) ) ) )  →  ( ( 𝑤  ≤  𝑥  ∧  𝑥  ≤  𝑤 )  ↔  𝑥  =  𝑤 ) ) | 
						
							| 26 | 11 20 25 | mpbi2and | ⊢ ( ( ( ( 𝐾  ∈  Poset  ∧  𝑆  ⊆  𝐵 )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ( ( ∀ 𝑦  ∈  𝑆 𝑥  ≤  𝑦  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑧  ≤  𝑦  →  𝑧  ≤  𝑥 ) )  ∧  ( ∀ 𝑦  ∈  𝑆 𝑤  ≤  𝑦  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑧  ≤  𝑦  →  𝑧  ≤  𝑤 ) ) ) )  →  𝑥  =  𝑤 ) | 
						
							| 27 | 26 | ex | ⊢ ( ( ( 𝐾  ∈  Poset  ∧  𝑆  ⊆  𝐵 )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  →  ( ( ( ∀ 𝑦  ∈  𝑆 𝑥  ≤  𝑦  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑧  ≤  𝑦  →  𝑧  ≤  𝑥 ) )  ∧  ( ∀ 𝑦  ∈  𝑆 𝑤  ≤  𝑦  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑧  ≤  𝑦  →  𝑧  ≤  𝑤 ) ) )  →  𝑥  =  𝑤 ) ) | 
						
							| 28 | 27 | ralrimivva | ⊢ ( ( 𝐾  ∈  Poset  ∧  𝑆  ⊆  𝐵 )  →  ∀ 𝑥  ∈  𝐵 ∀ 𝑤  ∈  𝐵 ( ( ( ∀ 𝑦  ∈  𝑆 𝑥  ≤  𝑦  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑧  ≤  𝑦  →  𝑧  ≤  𝑥 ) )  ∧  ( ∀ 𝑦  ∈  𝑆 𝑤  ≤  𝑦  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑧  ≤  𝑦  →  𝑧  ≤  𝑤 ) ) )  →  𝑥  =  𝑤 ) ) | 
						
							| 29 |  | breq1 | ⊢ ( 𝑥  =  𝑤  →  ( 𝑥  ≤  𝑦  ↔  𝑤  ≤  𝑦 ) ) | 
						
							| 30 | 29 | ralbidv | ⊢ ( 𝑥  =  𝑤  →  ( ∀ 𝑦  ∈  𝑆 𝑥  ≤  𝑦  ↔  ∀ 𝑦  ∈  𝑆 𝑤  ≤  𝑦 ) ) | 
						
							| 31 |  | breq2 | ⊢ ( 𝑥  =  𝑤  →  ( 𝑧  ≤  𝑥  ↔  𝑧  ≤  𝑤 ) ) | 
						
							| 32 | 31 | imbi2d | ⊢ ( 𝑥  =  𝑤  →  ( ( ∀ 𝑦  ∈  𝑆 𝑧  ≤  𝑦  →  𝑧  ≤  𝑥 )  ↔  ( ∀ 𝑦  ∈  𝑆 𝑧  ≤  𝑦  →  𝑧  ≤  𝑤 ) ) ) | 
						
							| 33 | 32 | ralbidv | ⊢ ( 𝑥  =  𝑤  →  ( ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑧  ≤  𝑦  →  𝑧  ≤  𝑥 )  ↔  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑧  ≤  𝑦  →  𝑧  ≤  𝑤 ) ) ) | 
						
							| 34 | 30 33 | anbi12d | ⊢ ( 𝑥  =  𝑤  →  ( ( ∀ 𝑦  ∈  𝑆 𝑥  ≤  𝑦  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑧  ≤  𝑦  →  𝑧  ≤  𝑥 ) )  ↔  ( ∀ 𝑦  ∈  𝑆 𝑤  ≤  𝑦  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑧  ≤  𝑦  →  𝑧  ≤  𝑤 ) ) ) ) | 
						
							| 35 | 34 | rmo4 | ⊢ ( ∃* 𝑥  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑥  ≤  𝑦  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑧  ≤  𝑦  →  𝑧  ≤  𝑥 ) )  ↔  ∀ 𝑥  ∈  𝐵 ∀ 𝑤  ∈  𝐵 ( ( ( ∀ 𝑦  ∈  𝑆 𝑥  ≤  𝑦  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑧  ≤  𝑦  →  𝑧  ≤  𝑥 ) )  ∧  ( ∀ 𝑦  ∈  𝑆 𝑤  ≤  𝑦  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑧  ≤  𝑦  →  𝑧  ≤  𝑤 ) ) )  →  𝑥  =  𝑤 ) ) | 
						
							| 36 | 28 35 | sylibr | ⊢ ( ( 𝐾  ∈  Poset  ∧  𝑆  ⊆  𝐵 )  →  ∃* 𝑥  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑥  ≤  𝑦  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  𝑆 𝑧  ≤  𝑦  →  𝑧  ≤  𝑥 ) ) ) |