Metamath Proof Explorer


Theorem posi

Description: Lemma for poset properties. (Contributed by NM, 11-Sep-2011)

Ref Expression
Hypotheses posi.b 𝐵 = ( Base ‘ 𝐾 )
posi.l = ( le ‘ 𝐾 )
Assertion posi ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 𝑋 ∧ ( ( 𝑋 𝑌𝑌 𝑋 ) → 𝑋 = 𝑌 ) ∧ ( ( 𝑋 𝑌𝑌 𝑍 ) → 𝑋 𝑍 ) ) )

Proof

Step Hyp Ref Expression
1 posi.b 𝐵 = ( Base ‘ 𝐾 )
2 posi.l = ( le ‘ 𝐾 )
3 1 2 ispos ( 𝐾 ∈ Poset ↔ ( 𝐾 ∈ V ∧ ∀ 𝑥𝐵𝑦𝐵𝑧𝐵 ( 𝑥 𝑥 ∧ ( ( 𝑥 𝑦𝑦 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 𝑦𝑦 𝑧 ) → 𝑥 𝑧 ) ) ) )
4 3 simprbi ( 𝐾 ∈ Poset → ∀ 𝑥𝐵𝑦𝐵𝑧𝐵 ( 𝑥 𝑥 ∧ ( ( 𝑥 𝑦𝑦 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 𝑦𝑦 𝑧 ) → 𝑥 𝑧 ) ) )
5 breq1 ( 𝑥 = 𝑋 → ( 𝑥 𝑥𝑋 𝑥 ) )
6 breq2 ( 𝑥 = 𝑋 → ( 𝑋 𝑥𝑋 𝑋 ) )
7 5 6 bitrd ( 𝑥 = 𝑋 → ( 𝑥 𝑥𝑋 𝑋 ) )
8 breq1 ( 𝑥 = 𝑋 → ( 𝑥 𝑦𝑋 𝑦 ) )
9 breq2 ( 𝑥 = 𝑋 → ( 𝑦 𝑥𝑦 𝑋 ) )
10 8 9 anbi12d ( 𝑥 = 𝑋 → ( ( 𝑥 𝑦𝑦 𝑥 ) ↔ ( 𝑋 𝑦𝑦 𝑋 ) ) )
11 eqeq1 ( 𝑥 = 𝑋 → ( 𝑥 = 𝑦𝑋 = 𝑦 ) )
12 10 11 imbi12d ( 𝑥 = 𝑋 → ( ( ( 𝑥 𝑦𝑦 𝑥 ) → 𝑥 = 𝑦 ) ↔ ( ( 𝑋 𝑦𝑦 𝑋 ) → 𝑋 = 𝑦 ) ) )
13 8 anbi1d ( 𝑥 = 𝑋 → ( ( 𝑥 𝑦𝑦 𝑧 ) ↔ ( 𝑋 𝑦𝑦 𝑧 ) ) )
14 breq1 ( 𝑥 = 𝑋 → ( 𝑥 𝑧𝑋 𝑧 ) )
15 13 14 imbi12d ( 𝑥 = 𝑋 → ( ( ( 𝑥 𝑦𝑦 𝑧 ) → 𝑥 𝑧 ) ↔ ( ( 𝑋 𝑦𝑦 𝑧 ) → 𝑋 𝑧 ) ) )
16 7 12 15 3anbi123d ( 𝑥 = 𝑋 → ( ( 𝑥 𝑥 ∧ ( ( 𝑥 𝑦𝑦 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 𝑦𝑦 𝑧 ) → 𝑥 𝑧 ) ) ↔ ( 𝑋 𝑋 ∧ ( ( 𝑋 𝑦𝑦 𝑋 ) → 𝑋 = 𝑦 ) ∧ ( ( 𝑋 𝑦𝑦 𝑧 ) → 𝑋 𝑧 ) ) ) )
17 breq2 ( 𝑦 = 𝑌 → ( 𝑋 𝑦𝑋 𝑌 ) )
18 breq1 ( 𝑦 = 𝑌 → ( 𝑦 𝑋𝑌 𝑋 ) )
19 17 18 anbi12d ( 𝑦 = 𝑌 → ( ( 𝑋 𝑦𝑦 𝑋 ) ↔ ( 𝑋 𝑌𝑌 𝑋 ) ) )
20 eqeq2 ( 𝑦 = 𝑌 → ( 𝑋 = 𝑦𝑋 = 𝑌 ) )
21 19 20 imbi12d ( 𝑦 = 𝑌 → ( ( ( 𝑋 𝑦𝑦 𝑋 ) → 𝑋 = 𝑦 ) ↔ ( ( 𝑋 𝑌𝑌 𝑋 ) → 𝑋 = 𝑌 ) ) )
22 breq1 ( 𝑦 = 𝑌 → ( 𝑦 𝑧𝑌 𝑧 ) )
23 17 22 anbi12d ( 𝑦 = 𝑌 → ( ( 𝑋 𝑦𝑦 𝑧 ) ↔ ( 𝑋 𝑌𝑌 𝑧 ) ) )
24 23 imbi1d ( 𝑦 = 𝑌 → ( ( ( 𝑋 𝑦𝑦 𝑧 ) → 𝑋 𝑧 ) ↔ ( ( 𝑋 𝑌𝑌 𝑧 ) → 𝑋 𝑧 ) ) )
25 21 24 3anbi23d ( 𝑦 = 𝑌 → ( ( 𝑋 𝑋 ∧ ( ( 𝑋 𝑦𝑦 𝑋 ) → 𝑋 = 𝑦 ) ∧ ( ( 𝑋 𝑦𝑦 𝑧 ) → 𝑋 𝑧 ) ) ↔ ( 𝑋 𝑋 ∧ ( ( 𝑋 𝑌𝑌 𝑋 ) → 𝑋 = 𝑌 ) ∧ ( ( 𝑋 𝑌𝑌 𝑧 ) → 𝑋 𝑧 ) ) ) )
26 breq2 ( 𝑧 = 𝑍 → ( 𝑌 𝑧𝑌 𝑍 ) )
27 26 anbi2d ( 𝑧 = 𝑍 → ( ( 𝑋 𝑌𝑌 𝑧 ) ↔ ( 𝑋 𝑌𝑌 𝑍 ) ) )
28 breq2 ( 𝑧 = 𝑍 → ( 𝑋 𝑧𝑋 𝑍 ) )
29 27 28 imbi12d ( 𝑧 = 𝑍 → ( ( ( 𝑋 𝑌𝑌 𝑧 ) → 𝑋 𝑧 ) ↔ ( ( 𝑋 𝑌𝑌 𝑍 ) → 𝑋 𝑍 ) ) )
30 29 3anbi3d ( 𝑧 = 𝑍 → ( ( 𝑋 𝑋 ∧ ( ( 𝑋 𝑌𝑌 𝑋 ) → 𝑋 = 𝑌 ) ∧ ( ( 𝑋 𝑌𝑌 𝑧 ) → 𝑋 𝑧 ) ) ↔ ( 𝑋 𝑋 ∧ ( ( 𝑋 𝑌𝑌 𝑋 ) → 𝑋 = 𝑌 ) ∧ ( ( 𝑋 𝑌𝑌 𝑍 ) → 𝑋 𝑍 ) ) ) )
31 16 25 30 rspc3v ( ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) → ( ∀ 𝑥𝐵𝑦𝐵𝑧𝐵 ( 𝑥 𝑥 ∧ ( ( 𝑥 𝑦𝑦 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 𝑦𝑦 𝑧 ) → 𝑥 𝑧 ) ) → ( 𝑋 𝑋 ∧ ( ( 𝑋 𝑌𝑌 𝑋 ) → 𝑋 = 𝑌 ) ∧ ( ( 𝑋 𝑌𝑌 𝑍 ) → 𝑋 𝑍 ) ) ) )
32 4 31 mpan9 ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 𝑋 ∧ ( ( 𝑋 𝑌𝑌 𝑋 ) → 𝑋 = 𝑌 ) ∧ ( ( 𝑋 𝑌𝑌 𝑍 ) → 𝑋 𝑍 ) ) )