Step |
Hyp |
Ref |
Expression |
1 |
|
poslubd.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
poslubd.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
3 |
|
poslubd.u |
⊢ 𝑈 = ( lub ‘ 𝐾 ) |
4 |
|
poslubd.k |
⊢ ( 𝜑 → 𝐾 ∈ Poset ) |
5 |
|
poslubd.s |
⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) |
6 |
|
poslubd.t |
⊢ ( 𝜑 → 𝑇 ∈ 𝐵 ) |
7 |
|
poslubd.ub |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ≤ 𝑇 ) |
8 |
|
poslubd.le |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 ) → 𝑇 ≤ 𝑦 ) |
9 |
|
biid |
⊢ ( ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦 ) ) ↔ ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦 ) ) ) |
10 |
2 1 3 9 4 5
|
lubval |
⊢ ( 𝜑 → ( 𝑈 ‘ 𝑆 ) = ( ℩ 𝑧 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦 ) ) ) ) |
11 |
7
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑇 ) |
12 |
8
|
3expia |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑇 ≤ 𝑦 ) ) |
13 |
12
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑇 ≤ 𝑦 ) ) |
14 |
11 13
|
jca |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑇 ∧ ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑇 ≤ 𝑦 ) ) ) |
15 |
|
breq2 |
⊢ ( 𝑧 = 𝑇 → ( 𝑥 ≤ 𝑧 ↔ 𝑥 ≤ 𝑇 ) ) |
16 |
15
|
ralbidv |
⊢ ( 𝑧 = 𝑇 → ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑧 ↔ ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑇 ) ) |
17 |
|
breq1 |
⊢ ( 𝑧 = 𝑇 → ( 𝑧 ≤ 𝑦 ↔ 𝑇 ≤ 𝑦 ) ) |
18 |
17
|
imbi2d |
⊢ ( 𝑧 = 𝑇 → ( ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦 ) ↔ ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑇 ≤ 𝑦 ) ) ) |
19 |
18
|
ralbidv |
⊢ ( 𝑧 = 𝑇 → ( ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑇 ≤ 𝑦 ) ) ) |
20 |
16 19
|
anbi12d |
⊢ ( 𝑧 = 𝑇 → ( ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦 ) ) ↔ ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑇 ∧ ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑇 ≤ 𝑦 ) ) ) ) |
21 |
20
|
rspcev |
⊢ ( ( 𝑇 ∈ 𝐵 ∧ ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑇 ∧ ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑇 ≤ 𝑦 ) ) ) → ∃ 𝑧 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦 ) ) ) |
22 |
6 14 21
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑧 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦 ) ) ) |
23 |
1 2
|
poslubmo |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑆 ⊆ 𝐵 ) → ∃* 𝑧 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦 ) ) ) |
24 |
4 5 23
|
syl2anc |
⊢ ( 𝜑 → ∃* 𝑧 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦 ) ) ) |
25 |
|
reu5 |
⊢ ( ∃! 𝑧 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦 ) ) ↔ ( ∃ 𝑧 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦 ) ) ∧ ∃* 𝑧 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦 ) ) ) ) |
26 |
22 24 25
|
sylanbrc |
⊢ ( 𝜑 → ∃! 𝑧 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦 ) ) ) |
27 |
20
|
riota2 |
⊢ ( ( 𝑇 ∈ 𝐵 ∧ ∃! 𝑧 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦 ) ) ) → ( ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑇 ∧ ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑇 ≤ 𝑦 ) ) ↔ ( ℩ 𝑧 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦 ) ) ) = 𝑇 ) ) |
28 |
6 26 27
|
syl2anc |
⊢ ( 𝜑 → ( ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑇 ∧ ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑇 ≤ 𝑦 ) ) ↔ ( ℩ 𝑧 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦 ) ) ) = 𝑇 ) ) |
29 |
14 28
|
mpbid |
⊢ ( 𝜑 → ( ℩ 𝑧 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑧 ∧ ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦 ) ) ) = 𝑇 ) |
30 |
10 29
|
eqtrd |
⊢ ( 𝜑 → ( 𝑈 ‘ 𝑆 ) = 𝑇 ) |