| Step | Hyp | Ref | Expression | 
						
							| 1 |  | poslubd.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 2 |  | poslubd.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 3 |  | poslubd.u | ⊢ 𝑈  =  ( lub ‘ 𝐾 ) | 
						
							| 4 |  | poslubd.k | ⊢ ( 𝜑  →  𝐾  ∈  Poset ) | 
						
							| 5 |  | poslubd.s | ⊢ ( 𝜑  →  𝑆  ⊆  𝐵 ) | 
						
							| 6 |  | poslubd.t | ⊢ ( 𝜑  →  𝑇  ∈  𝐵 ) | 
						
							| 7 |  | poslubd.ub | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑆 )  →  𝑥  ≤  𝑇 ) | 
						
							| 8 |  | poslubd.le | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵  ∧  ∀ 𝑥  ∈  𝑆 𝑥  ≤  𝑦 )  →  𝑇  ≤  𝑦 ) | 
						
							| 9 |  | biid | ⊢ ( ( ∀ 𝑥  ∈  𝑆 𝑥  ≤  𝑧  ∧  ∀ 𝑦  ∈  𝐵 ( ∀ 𝑥  ∈  𝑆 𝑥  ≤  𝑦  →  𝑧  ≤  𝑦 ) )  ↔  ( ∀ 𝑥  ∈  𝑆 𝑥  ≤  𝑧  ∧  ∀ 𝑦  ∈  𝐵 ( ∀ 𝑥  ∈  𝑆 𝑥  ≤  𝑦  →  𝑧  ≤  𝑦 ) ) ) | 
						
							| 10 | 2 1 3 9 4 5 | lubval | ⊢ ( 𝜑  →  ( 𝑈 ‘ 𝑆 )  =  ( ℩ 𝑧  ∈  𝐵 ( ∀ 𝑥  ∈  𝑆 𝑥  ≤  𝑧  ∧  ∀ 𝑦  ∈  𝐵 ( ∀ 𝑥  ∈  𝑆 𝑥  ≤  𝑦  →  𝑧  ≤  𝑦 ) ) ) ) | 
						
							| 11 | 7 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝑆 𝑥  ≤  𝑇 ) | 
						
							| 12 | 8 | 3expia | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  →  ( ∀ 𝑥  ∈  𝑆 𝑥  ≤  𝑦  →  𝑇  ≤  𝑦 ) ) | 
						
							| 13 | 12 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  𝐵 ( ∀ 𝑥  ∈  𝑆 𝑥  ≤  𝑦  →  𝑇  ≤  𝑦 ) ) | 
						
							| 14 | 11 13 | jca | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  𝑆 𝑥  ≤  𝑇  ∧  ∀ 𝑦  ∈  𝐵 ( ∀ 𝑥  ∈  𝑆 𝑥  ≤  𝑦  →  𝑇  ≤  𝑦 ) ) ) | 
						
							| 15 |  | breq2 | ⊢ ( 𝑧  =  𝑇  →  ( 𝑥  ≤  𝑧  ↔  𝑥  ≤  𝑇 ) ) | 
						
							| 16 | 15 | ralbidv | ⊢ ( 𝑧  =  𝑇  →  ( ∀ 𝑥  ∈  𝑆 𝑥  ≤  𝑧  ↔  ∀ 𝑥  ∈  𝑆 𝑥  ≤  𝑇 ) ) | 
						
							| 17 |  | breq1 | ⊢ ( 𝑧  =  𝑇  →  ( 𝑧  ≤  𝑦  ↔  𝑇  ≤  𝑦 ) ) | 
						
							| 18 | 17 | imbi2d | ⊢ ( 𝑧  =  𝑇  →  ( ( ∀ 𝑥  ∈  𝑆 𝑥  ≤  𝑦  →  𝑧  ≤  𝑦 )  ↔  ( ∀ 𝑥  ∈  𝑆 𝑥  ≤  𝑦  →  𝑇  ≤  𝑦 ) ) ) | 
						
							| 19 | 18 | ralbidv | ⊢ ( 𝑧  =  𝑇  →  ( ∀ 𝑦  ∈  𝐵 ( ∀ 𝑥  ∈  𝑆 𝑥  ≤  𝑦  →  𝑧  ≤  𝑦 )  ↔  ∀ 𝑦  ∈  𝐵 ( ∀ 𝑥  ∈  𝑆 𝑥  ≤  𝑦  →  𝑇  ≤  𝑦 ) ) ) | 
						
							| 20 | 16 19 | anbi12d | ⊢ ( 𝑧  =  𝑇  →  ( ( ∀ 𝑥  ∈  𝑆 𝑥  ≤  𝑧  ∧  ∀ 𝑦  ∈  𝐵 ( ∀ 𝑥  ∈  𝑆 𝑥  ≤  𝑦  →  𝑧  ≤  𝑦 ) )  ↔  ( ∀ 𝑥  ∈  𝑆 𝑥  ≤  𝑇  ∧  ∀ 𝑦  ∈  𝐵 ( ∀ 𝑥  ∈  𝑆 𝑥  ≤  𝑦  →  𝑇  ≤  𝑦 ) ) ) ) | 
						
							| 21 | 20 | rspcev | ⊢ ( ( 𝑇  ∈  𝐵  ∧  ( ∀ 𝑥  ∈  𝑆 𝑥  ≤  𝑇  ∧  ∀ 𝑦  ∈  𝐵 ( ∀ 𝑥  ∈  𝑆 𝑥  ≤  𝑦  →  𝑇  ≤  𝑦 ) ) )  →  ∃ 𝑧  ∈  𝐵 ( ∀ 𝑥  ∈  𝑆 𝑥  ≤  𝑧  ∧  ∀ 𝑦  ∈  𝐵 ( ∀ 𝑥  ∈  𝑆 𝑥  ≤  𝑦  →  𝑧  ≤  𝑦 ) ) ) | 
						
							| 22 | 6 14 21 | syl2anc | ⊢ ( 𝜑  →  ∃ 𝑧  ∈  𝐵 ( ∀ 𝑥  ∈  𝑆 𝑥  ≤  𝑧  ∧  ∀ 𝑦  ∈  𝐵 ( ∀ 𝑥  ∈  𝑆 𝑥  ≤  𝑦  →  𝑧  ≤  𝑦 ) ) ) | 
						
							| 23 | 1 2 | poslubmo | ⊢ ( ( 𝐾  ∈  Poset  ∧  𝑆  ⊆  𝐵 )  →  ∃* 𝑧  ∈  𝐵 ( ∀ 𝑥  ∈  𝑆 𝑥  ≤  𝑧  ∧  ∀ 𝑦  ∈  𝐵 ( ∀ 𝑥  ∈  𝑆 𝑥  ≤  𝑦  →  𝑧  ≤  𝑦 ) ) ) | 
						
							| 24 | 4 5 23 | syl2anc | ⊢ ( 𝜑  →  ∃* 𝑧  ∈  𝐵 ( ∀ 𝑥  ∈  𝑆 𝑥  ≤  𝑧  ∧  ∀ 𝑦  ∈  𝐵 ( ∀ 𝑥  ∈  𝑆 𝑥  ≤  𝑦  →  𝑧  ≤  𝑦 ) ) ) | 
						
							| 25 |  | reu5 | ⊢ ( ∃! 𝑧  ∈  𝐵 ( ∀ 𝑥  ∈  𝑆 𝑥  ≤  𝑧  ∧  ∀ 𝑦  ∈  𝐵 ( ∀ 𝑥  ∈  𝑆 𝑥  ≤  𝑦  →  𝑧  ≤  𝑦 ) )  ↔  ( ∃ 𝑧  ∈  𝐵 ( ∀ 𝑥  ∈  𝑆 𝑥  ≤  𝑧  ∧  ∀ 𝑦  ∈  𝐵 ( ∀ 𝑥  ∈  𝑆 𝑥  ≤  𝑦  →  𝑧  ≤  𝑦 ) )  ∧  ∃* 𝑧  ∈  𝐵 ( ∀ 𝑥  ∈  𝑆 𝑥  ≤  𝑧  ∧  ∀ 𝑦  ∈  𝐵 ( ∀ 𝑥  ∈  𝑆 𝑥  ≤  𝑦  →  𝑧  ≤  𝑦 ) ) ) ) | 
						
							| 26 | 22 24 25 | sylanbrc | ⊢ ( 𝜑  →  ∃! 𝑧  ∈  𝐵 ( ∀ 𝑥  ∈  𝑆 𝑥  ≤  𝑧  ∧  ∀ 𝑦  ∈  𝐵 ( ∀ 𝑥  ∈  𝑆 𝑥  ≤  𝑦  →  𝑧  ≤  𝑦 ) ) ) | 
						
							| 27 | 20 | riota2 | ⊢ ( ( 𝑇  ∈  𝐵  ∧  ∃! 𝑧  ∈  𝐵 ( ∀ 𝑥  ∈  𝑆 𝑥  ≤  𝑧  ∧  ∀ 𝑦  ∈  𝐵 ( ∀ 𝑥  ∈  𝑆 𝑥  ≤  𝑦  →  𝑧  ≤  𝑦 ) ) )  →  ( ( ∀ 𝑥  ∈  𝑆 𝑥  ≤  𝑇  ∧  ∀ 𝑦  ∈  𝐵 ( ∀ 𝑥  ∈  𝑆 𝑥  ≤  𝑦  →  𝑇  ≤  𝑦 ) )  ↔  ( ℩ 𝑧  ∈  𝐵 ( ∀ 𝑥  ∈  𝑆 𝑥  ≤  𝑧  ∧  ∀ 𝑦  ∈  𝐵 ( ∀ 𝑥  ∈  𝑆 𝑥  ≤  𝑦  →  𝑧  ≤  𝑦 ) ) )  =  𝑇 ) ) | 
						
							| 28 | 6 26 27 | syl2anc | ⊢ ( 𝜑  →  ( ( ∀ 𝑥  ∈  𝑆 𝑥  ≤  𝑇  ∧  ∀ 𝑦  ∈  𝐵 ( ∀ 𝑥  ∈  𝑆 𝑥  ≤  𝑦  →  𝑇  ≤  𝑦 ) )  ↔  ( ℩ 𝑧  ∈  𝐵 ( ∀ 𝑥  ∈  𝑆 𝑥  ≤  𝑧  ∧  ∀ 𝑦  ∈  𝐵 ( ∀ 𝑥  ∈  𝑆 𝑥  ≤  𝑦  →  𝑧  ≤  𝑦 ) ) )  =  𝑇 ) ) | 
						
							| 29 | 14 28 | mpbid | ⊢ ( 𝜑  →  ( ℩ 𝑧  ∈  𝐵 ( ∀ 𝑥  ∈  𝑆 𝑥  ≤  𝑧  ∧  ∀ 𝑦  ∈  𝐵 ( ∀ 𝑥  ∈  𝑆 𝑥  ≤  𝑦  →  𝑧  ≤  𝑦 ) ) )  =  𝑇 ) | 
						
							| 30 | 10 29 | eqtrd | ⊢ ( 𝜑  →  ( 𝑈 ‘ 𝑆 )  =  𝑇 ) |