| Step | Hyp | Ref | Expression | 
						
							| 1 |  | poslubdg.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 2 |  | poslubdg.b | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ 𝐾 ) ) | 
						
							| 3 |  | poslubdg.u | ⊢ ( 𝜑  →  𝑈  =  ( lub ‘ 𝐾 ) ) | 
						
							| 4 |  | poslubdg.k | ⊢ ( 𝜑  →  𝐾  ∈  Poset ) | 
						
							| 5 |  | poslubdg.s | ⊢ ( 𝜑  →  𝑆  ⊆  𝐵 ) | 
						
							| 6 |  | poslubdg.t | ⊢ ( 𝜑  →  𝑇  ∈  𝐵 ) | 
						
							| 7 |  | poslubdg.ub | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑆 )  →  𝑥  ≤  𝑇 ) | 
						
							| 8 |  | poslubdg.le | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵  ∧  ∀ 𝑥  ∈  𝑆 𝑥  ≤  𝑦 )  →  𝑇  ≤  𝑦 ) | 
						
							| 9 | 3 | fveq1d | ⊢ ( 𝜑  →  ( 𝑈 ‘ 𝑆 )  =  ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ) | 
						
							| 10 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 11 |  | eqid | ⊢ ( lub ‘ 𝐾 )  =  ( lub ‘ 𝐾 ) | 
						
							| 12 | 5 2 | sseqtrd | ⊢ ( 𝜑  →  𝑆  ⊆  ( Base ‘ 𝐾 ) ) | 
						
							| 13 | 6 2 | eleqtrd | ⊢ ( 𝜑  →  𝑇  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 14 | 2 | eleq2d | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝐵  ↔  𝑦  ∈  ( Base ‘ 𝐾 ) ) ) | 
						
							| 15 | 14 | biimpar | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( Base ‘ 𝐾 ) )  →  𝑦  ∈  𝐵 ) | 
						
							| 16 | 15 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( Base ‘ 𝐾 )  ∧  ∀ 𝑥  ∈  𝑆 𝑥  ≤  𝑦 )  →  𝑦  ∈  𝐵 ) | 
						
							| 17 | 16 8 | syld3an2 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( Base ‘ 𝐾 )  ∧  ∀ 𝑥  ∈  𝑆 𝑥  ≤  𝑦 )  →  𝑇  ≤  𝑦 ) | 
						
							| 18 | 1 10 11 4 12 13 7 17 | poslubd | ⊢ ( 𝜑  →  ( ( lub ‘ 𝐾 ) ‘ 𝑆 )  =  𝑇 ) | 
						
							| 19 | 9 18 | eqtrd | ⊢ ( 𝜑  →  ( 𝑈 ‘ 𝑆 )  =  𝑇 ) |