Step |
Hyp |
Ref |
Expression |
1 |
|
posjidm.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
posmidm.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
3 |
|
eqid |
⊢ ( glb ‘ 𝐾 ) = ( glb ‘ 𝐾 ) |
4 |
|
simpl |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ) → 𝐾 ∈ Poset ) |
5 |
|
simpr |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
6 |
3 2 4 5 5
|
meetval |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑋 ) = ( ( glb ‘ 𝐾 ) ‘ { 𝑋 , 𝑋 } ) ) |
7 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
8 |
1 7
|
posref |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ( le ‘ 𝐾 ) 𝑋 ) |
9 |
|
eqidd |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ) → { 𝑋 , 𝑋 } = { 𝑋 , 𝑋 } ) |
10 |
4 1 5 5 7 8 9 3
|
glbpr |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ) → ( ( glb ‘ 𝐾 ) ‘ { 𝑋 , 𝑋 } ) = 𝑋 ) |
11 |
6 10
|
eqtrd |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑋 ) = 𝑋 ) |