Metamath Proof Explorer


Theorem posmidm

Description: Poset meet is idempotent. latmidm could be shortened by this. (Contributed by Zhi Wang, 27-Sep-2024)

Ref Expression
Hypotheses posjidm.b 𝐵 = ( Base ‘ 𝐾 )
posmidm.m = ( meet ‘ 𝐾 )
Assertion posmidm ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵 ) → ( 𝑋 𝑋 ) = 𝑋 )

Proof

Step Hyp Ref Expression
1 posjidm.b 𝐵 = ( Base ‘ 𝐾 )
2 posmidm.m = ( meet ‘ 𝐾 )
3 eqid ( glb ‘ 𝐾 ) = ( glb ‘ 𝐾 )
4 simpl ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵 ) → 𝐾 ∈ Poset )
5 simpr ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵 ) → 𝑋𝐵 )
6 3 2 4 5 5 meetval ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵 ) → ( 𝑋 𝑋 ) = ( ( glb ‘ 𝐾 ) ‘ { 𝑋 , 𝑋 } ) )
7 eqid ( le ‘ 𝐾 ) = ( le ‘ 𝐾 )
8 1 7 posref ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵 ) → 𝑋 ( le ‘ 𝐾 ) 𝑋 )
9 eqidd ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵 ) → { 𝑋 , 𝑋 } = { 𝑋 , 𝑋 } )
10 4 1 5 5 7 8 9 3 glbpr ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵 ) → ( ( glb ‘ 𝐾 ) ‘ { 𝑋 , 𝑋 } ) = 𝑋 )
11 6 10 eqtrd ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵 ) → ( 𝑋 𝑋 ) = 𝑋 )