| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pospo.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | pospo.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 3 |  | pospo.s | ⊢  <   =  ( lt ‘ 𝐾 ) | 
						
							| 4 | 3 | pltirr | ⊢ ( ( 𝐾  ∈  Poset  ∧  𝑥  ∈  𝐵 )  →  ¬  𝑥  <  𝑥 ) | 
						
							| 5 | 1 3 | plttr | ⊢ ( ( 𝐾  ∈  Poset  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( ( 𝑥  <  𝑦  ∧  𝑦  <  𝑧 )  →  𝑥  <  𝑧 ) ) | 
						
							| 6 | 4 5 | ispod | ⊢ ( 𝐾  ∈  Poset  →   <   Po  𝐵 ) | 
						
							| 7 |  | relres | ⊢ Rel  (  I   ↾  𝐵 ) | 
						
							| 8 | 7 | a1i | ⊢ ( 𝐾  ∈  Poset  →  Rel  (  I   ↾  𝐵 ) ) | 
						
							| 9 |  | opabresid | ⊢ (  I   ↾  𝐵 )  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐵  ∧  𝑦  =  𝑥 ) } | 
						
							| 10 | 9 | eqcomi | ⊢ { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐵  ∧  𝑦  =  𝑥 ) }  =  (  I   ↾  𝐵 ) | 
						
							| 11 | 10 | eleq2i | ⊢ ( 〈 𝑥 ,  𝑦 〉  ∈  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐵  ∧  𝑦  =  𝑥 ) }  ↔  〈 𝑥 ,  𝑦 〉  ∈  (  I   ↾  𝐵 ) ) | 
						
							| 12 |  | opabidw | ⊢ ( 〈 𝑥 ,  𝑦 〉  ∈  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐵  ∧  𝑦  =  𝑥 ) }  ↔  ( 𝑥  ∈  𝐵  ∧  𝑦  =  𝑥 ) ) | 
						
							| 13 | 11 12 | bitr3i | ⊢ ( 〈 𝑥 ,  𝑦 〉  ∈  (  I   ↾  𝐵 )  ↔  ( 𝑥  ∈  𝐵  ∧  𝑦  =  𝑥 ) ) | 
						
							| 14 | 1 2 | posref | ⊢ ( ( 𝐾  ∈  Poset  ∧  𝑥  ∈  𝐵 )  →  𝑥  ≤  𝑥 ) | 
						
							| 15 |  | df-br | ⊢ ( 𝑥  ≤  𝑦  ↔  〈 𝑥 ,  𝑦 〉  ∈   ≤  ) | 
						
							| 16 |  | breq2 | ⊢ ( 𝑦  =  𝑥  →  ( 𝑥  ≤  𝑦  ↔  𝑥  ≤  𝑥 ) ) | 
						
							| 17 | 15 16 | bitr3id | ⊢ ( 𝑦  =  𝑥  →  ( 〈 𝑥 ,  𝑦 〉  ∈   ≤   ↔  𝑥  ≤  𝑥 ) ) | 
						
							| 18 | 14 17 | syl5ibrcom | ⊢ ( ( 𝐾  ∈  Poset  ∧  𝑥  ∈  𝐵 )  →  ( 𝑦  =  𝑥  →  〈 𝑥 ,  𝑦 〉  ∈   ≤  ) ) | 
						
							| 19 | 18 | expimpd | ⊢ ( 𝐾  ∈  Poset  →  ( ( 𝑥  ∈  𝐵  ∧  𝑦  =  𝑥 )  →  〈 𝑥 ,  𝑦 〉  ∈   ≤  ) ) | 
						
							| 20 | 13 19 | biimtrid | ⊢ ( 𝐾  ∈  Poset  →  ( 〈 𝑥 ,  𝑦 〉  ∈  (  I   ↾  𝐵 )  →  〈 𝑥 ,  𝑦 〉  ∈   ≤  ) ) | 
						
							| 21 | 8 20 | relssdv | ⊢ ( 𝐾  ∈  Poset  →  (  I   ↾  𝐵 )  ⊆   ≤  ) | 
						
							| 22 | 6 21 | jca | ⊢ ( 𝐾  ∈  Poset  →  (  <   Po  𝐵  ∧  (  I   ↾  𝐵 )  ⊆   ≤  ) ) | 
						
							| 23 |  | simpl | ⊢ ( ( 𝐾  ∈  𝑉  ∧  (  <   Po  𝐵  ∧  (  I   ↾  𝐵 )  ⊆   ≤  ) )  →  𝐾  ∈  𝑉 ) | 
						
							| 24 | 1 | a1i | ⊢ ( ( 𝐾  ∈  𝑉  ∧  (  <   Po  𝐵  ∧  (  I   ↾  𝐵 )  ⊆   ≤  ) )  →  𝐵  =  ( Base ‘ 𝐾 ) ) | 
						
							| 25 | 2 | a1i | ⊢ ( ( 𝐾  ∈  𝑉  ∧  (  <   Po  𝐵  ∧  (  I   ↾  𝐵 )  ⊆   ≤  ) )  →   ≤   =  ( le ‘ 𝐾 ) ) | 
						
							| 26 |  | equid | ⊢ 𝑥  =  𝑥 | 
						
							| 27 |  | simpr | ⊢ ( ( ( 𝐾  ∈  𝑉  ∧  (  <   Po  𝐵  ∧  (  I   ↾  𝐵 )  ⊆   ≤  ) )  ∧  𝑥  ∈  𝐵 )  →  𝑥  ∈  𝐵 ) | 
						
							| 28 |  | resieq | ⊢ ( ( 𝑥  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  →  ( 𝑥 (  I   ↾  𝐵 ) 𝑥  ↔  𝑥  =  𝑥 ) ) | 
						
							| 29 | 27 27 28 | syl2anc | ⊢ ( ( ( 𝐾  ∈  𝑉  ∧  (  <   Po  𝐵  ∧  (  I   ↾  𝐵 )  ⊆   ≤  ) )  ∧  𝑥  ∈  𝐵 )  →  ( 𝑥 (  I   ↾  𝐵 ) 𝑥  ↔  𝑥  =  𝑥 ) ) | 
						
							| 30 | 26 29 | mpbiri | ⊢ ( ( ( 𝐾  ∈  𝑉  ∧  (  <   Po  𝐵  ∧  (  I   ↾  𝐵 )  ⊆   ≤  ) )  ∧  𝑥  ∈  𝐵 )  →  𝑥 (  I   ↾  𝐵 ) 𝑥 ) | 
						
							| 31 |  | simplrr | ⊢ ( ( ( 𝐾  ∈  𝑉  ∧  (  <   Po  𝐵  ∧  (  I   ↾  𝐵 )  ⊆   ≤  ) )  ∧  𝑥  ∈  𝐵 )  →  (  I   ↾  𝐵 )  ⊆   ≤  ) | 
						
							| 32 | 31 | ssbrd | ⊢ ( ( ( 𝐾  ∈  𝑉  ∧  (  <   Po  𝐵  ∧  (  I   ↾  𝐵 )  ⊆   ≤  ) )  ∧  𝑥  ∈  𝐵 )  →  ( 𝑥 (  I   ↾  𝐵 ) 𝑥  →  𝑥  ≤  𝑥 ) ) | 
						
							| 33 | 30 32 | mpd | ⊢ ( ( ( 𝐾  ∈  𝑉  ∧  (  <   Po  𝐵  ∧  (  I   ↾  𝐵 )  ⊆   ≤  ) )  ∧  𝑥  ∈  𝐵 )  →  𝑥  ≤  𝑥 ) | 
						
							| 34 | 1 2 3 | pleval2i | ⊢ ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( 𝑥  ≤  𝑦  →  ( 𝑥  <  𝑦  ∨  𝑥  =  𝑦 ) ) ) | 
						
							| 35 | 34 | 3adant1 | ⊢ ( ( ( 𝐾  ∈  𝑉  ∧  (  <   Po  𝐵  ∧  (  I   ↾  𝐵 )  ⊆   ≤  ) )  ∧  𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( 𝑥  ≤  𝑦  →  ( 𝑥  <  𝑦  ∨  𝑥  =  𝑦 ) ) ) | 
						
							| 36 | 1 2 3 | pleval2i | ⊢ ( ( 𝑦  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  →  ( 𝑦  ≤  𝑥  →  ( 𝑦  <  𝑥  ∨  𝑦  =  𝑥 ) ) ) | 
						
							| 37 | 36 | ancoms | ⊢ ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( 𝑦  ≤  𝑥  →  ( 𝑦  <  𝑥  ∨  𝑦  =  𝑥 ) ) ) | 
						
							| 38 | 37 | 3adant1 | ⊢ ( ( ( 𝐾  ∈  𝑉  ∧  (  <   Po  𝐵  ∧  (  I   ↾  𝐵 )  ⊆   ≤  ) )  ∧  𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( 𝑦  ≤  𝑥  →  ( 𝑦  <  𝑥  ∨  𝑦  =  𝑥 ) ) ) | 
						
							| 39 |  | simprl | ⊢ ( ( 𝐾  ∈  𝑉  ∧  (  <   Po  𝐵  ∧  (  I   ↾  𝐵 )  ⊆   ≤  ) )  →   <   Po  𝐵 ) | 
						
							| 40 |  | po2nr | ⊢ ( (  <   Po  𝐵  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ¬  ( 𝑥  <  𝑦  ∧  𝑦  <  𝑥 ) ) | 
						
							| 41 | 40 | 3impb | ⊢ ( (  <   Po  𝐵  ∧  𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ¬  ( 𝑥  <  𝑦  ∧  𝑦  <  𝑥 ) ) | 
						
							| 42 | 39 41 | syl3an1 | ⊢ ( ( ( 𝐾  ∈  𝑉  ∧  (  <   Po  𝐵  ∧  (  I   ↾  𝐵 )  ⊆   ≤  ) )  ∧  𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ¬  ( 𝑥  <  𝑦  ∧  𝑦  <  𝑥 ) ) | 
						
							| 43 | 42 | pm2.21d | ⊢ ( ( ( 𝐾  ∈  𝑉  ∧  (  <   Po  𝐵  ∧  (  I   ↾  𝐵 )  ⊆   ≤  ) )  ∧  𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( ( 𝑥  <  𝑦  ∧  𝑦  <  𝑥 )  →  𝑥  =  𝑦 ) ) | 
						
							| 44 |  | simpl | ⊢ ( ( 𝑥  =  𝑦  ∧  𝑦  <  𝑥 )  →  𝑥  =  𝑦 ) | 
						
							| 45 | 44 | a1i | ⊢ ( ( ( 𝐾  ∈  𝑉  ∧  (  <   Po  𝐵  ∧  (  I   ↾  𝐵 )  ⊆   ≤  ) )  ∧  𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( ( 𝑥  =  𝑦  ∧  𝑦  <  𝑥 )  →  𝑥  =  𝑦 ) ) | 
						
							| 46 |  | simpr | ⊢ ( ( 𝑥  <  𝑦  ∧  𝑦  =  𝑥 )  →  𝑦  =  𝑥 ) | 
						
							| 47 | 46 | equcomd | ⊢ ( ( 𝑥  <  𝑦  ∧  𝑦  =  𝑥 )  →  𝑥  =  𝑦 ) | 
						
							| 48 | 47 | a1i | ⊢ ( ( ( 𝐾  ∈  𝑉  ∧  (  <   Po  𝐵  ∧  (  I   ↾  𝐵 )  ⊆   ≤  ) )  ∧  𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( ( 𝑥  <  𝑦  ∧  𝑦  =  𝑥 )  →  𝑥  =  𝑦 ) ) | 
						
							| 49 |  | simpl | ⊢ ( ( 𝑥  =  𝑦  ∧  𝑦  =  𝑥 )  →  𝑥  =  𝑦 ) | 
						
							| 50 | 49 | a1i | ⊢ ( ( ( 𝐾  ∈  𝑉  ∧  (  <   Po  𝐵  ∧  (  I   ↾  𝐵 )  ⊆   ≤  ) )  ∧  𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( ( 𝑥  =  𝑦  ∧  𝑦  =  𝑥 )  →  𝑥  =  𝑦 ) ) | 
						
							| 51 | 43 45 48 50 | ccased | ⊢ ( ( ( 𝐾  ∈  𝑉  ∧  (  <   Po  𝐵  ∧  (  I   ↾  𝐵 )  ⊆   ≤  ) )  ∧  𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( ( ( 𝑥  <  𝑦  ∨  𝑥  =  𝑦 )  ∧  ( 𝑦  <  𝑥  ∨  𝑦  =  𝑥 ) )  →  𝑥  =  𝑦 ) ) | 
						
							| 52 | 35 38 51 | syl2and | ⊢ ( ( ( 𝐾  ∈  𝑉  ∧  (  <   Po  𝐵  ∧  (  I   ↾  𝐵 )  ⊆   ≤  ) )  ∧  𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( ( 𝑥  ≤  𝑦  ∧  𝑦  ≤  𝑥 )  →  𝑥  =  𝑦 ) ) | 
						
							| 53 |  | simpr1 | ⊢ ( ( ( 𝐾  ∈  𝑉  ∧  (  <   Po  𝐵  ∧  (  I   ↾  𝐵 )  ⊆   ≤  ) )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  𝑥  ∈  𝐵 ) | 
						
							| 54 |  | simpr2 | ⊢ ( ( ( 𝐾  ∈  𝑉  ∧  (  <   Po  𝐵  ∧  (  I   ↾  𝐵 )  ⊆   ≤  ) )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  𝑦  ∈  𝐵 ) | 
						
							| 55 | 53 54 34 | syl2anc | ⊢ ( ( ( 𝐾  ∈  𝑉  ∧  (  <   Po  𝐵  ∧  (  I   ↾  𝐵 )  ⊆   ≤  ) )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( 𝑥  ≤  𝑦  →  ( 𝑥  <  𝑦  ∨  𝑥  =  𝑦 ) ) ) | 
						
							| 56 |  | simpr3 | ⊢ ( ( ( 𝐾  ∈  𝑉  ∧  (  <   Po  𝐵  ∧  (  I   ↾  𝐵 )  ⊆   ≤  ) )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  𝑧  ∈  𝐵 ) | 
						
							| 57 | 1 2 3 | pleval2i | ⊢ ( ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  →  ( 𝑦  ≤  𝑧  →  ( 𝑦  <  𝑧  ∨  𝑦  =  𝑧 ) ) ) | 
						
							| 58 | 54 56 57 | syl2anc | ⊢ ( ( ( 𝐾  ∈  𝑉  ∧  (  <   Po  𝐵  ∧  (  I   ↾  𝐵 )  ⊆   ≤  ) )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( 𝑦  ≤  𝑧  →  ( 𝑦  <  𝑧  ∨  𝑦  =  𝑧 ) ) ) | 
						
							| 59 |  | potr | ⊢ ( (  <   Po  𝐵  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( ( 𝑥  <  𝑦  ∧  𝑦  <  𝑧 )  →  𝑥  <  𝑧 ) ) | 
						
							| 60 | 39 59 | sylan | ⊢ ( ( ( 𝐾  ∈  𝑉  ∧  (  <   Po  𝐵  ∧  (  I   ↾  𝐵 )  ⊆   ≤  ) )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( ( 𝑥  <  𝑦  ∧  𝑦  <  𝑧 )  →  𝑥  <  𝑧 ) ) | 
						
							| 61 |  | simpll | ⊢ ( ( ( 𝐾  ∈  𝑉  ∧  (  <   Po  𝐵  ∧  (  I   ↾  𝐵 )  ⊆   ≤  ) )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  𝐾  ∈  𝑉 ) | 
						
							| 62 | 2 3 | pltle | ⊢ ( ( 𝐾  ∈  𝑉  ∧  𝑥  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  →  ( 𝑥  <  𝑧  →  𝑥  ≤  𝑧 ) ) | 
						
							| 63 | 61 53 56 62 | syl3anc | ⊢ ( ( ( 𝐾  ∈  𝑉  ∧  (  <   Po  𝐵  ∧  (  I   ↾  𝐵 )  ⊆   ≤  ) )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( 𝑥  <  𝑧  →  𝑥  ≤  𝑧 ) ) | 
						
							| 64 | 60 63 | syld | ⊢ ( ( ( 𝐾  ∈  𝑉  ∧  (  <   Po  𝐵  ∧  (  I   ↾  𝐵 )  ⊆   ≤  ) )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( ( 𝑥  <  𝑦  ∧  𝑦  <  𝑧 )  →  𝑥  ≤  𝑧 ) ) | 
						
							| 65 |  | breq1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  <  𝑧  ↔  𝑦  <  𝑧 ) ) | 
						
							| 66 | 65 | biimpar | ⊢ ( ( 𝑥  =  𝑦  ∧  𝑦  <  𝑧 )  →  𝑥  <  𝑧 ) | 
						
							| 67 | 66 63 | syl5 | ⊢ ( ( ( 𝐾  ∈  𝑉  ∧  (  <   Po  𝐵  ∧  (  I   ↾  𝐵 )  ⊆   ≤  ) )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( ( 𝑥  =  𝑦  ∧  𝑦  <  𝑧 )  →  𝑥  ≤  𝑧 ) ) | 
						
							| 68 |  | breq2 | ⊢ ( 𝑦  =  𝑧  →  ( 𝑥  <  𝑦  ↔  𝑥  <  𝑧 ) ) | 
						
							| 69 | 68 | biimpac | ⊢ ( ( 𝑥  <  𝑦  ∧  𝑦  =  𝑧 )  →  𝑥  <  𝑧 ) | 
						
							| 70 | 69 63 | syl5 | ⊢ ( ( ( 𝐾  ∈  𝑉  ∧  (  <   Po  𝐵  ∧  (  I   ↾  𝐵 )  ⊆   ≤  ) )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( ( 𝑥  <  𝑦  ∧  𝑦  =  𝑧 )  →  𝑥  ≤  𝑧 ) ) | 
						
							| 71 | 53 33 | syldan | ⊢ ( ( ( 𝐾  ∈  𝑉  ∧  (  <   Po  𝐵  ∧  (  I   ↾  𝐵 )  ⊆   ≤  ) )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  𝑥  ≤  𝑥 ) | 
						
							| 72 |  | eqtr | ⊢ ( ( 𝑥  =  𝑦  ∧  𝑦  =  𝑧 )  →  𝑥  =  𝑧 ) | 
						
							| 73 | 72 | breq2d | ⊢ ( ( 𝑥  =  𝑦  ∧  𝑦  =  𝑧 )  →  ( 𝑥  ≤  𝑥  ↔  𝑥  ≤  𝑧 ) ) | 
						
							| 74 | 71 73 | syl5ibcom | ⊢ ( ( ( 𝐾  ∈  𝑉  ∧  (  <   Po  𝐵  ∧  (  I   ↾  𝐵 )  ⊆   ≤  ) )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( ( 𝑥  =  𝑦  ∧  𝑦  =  𝑧 )  →  𝑥  ≤  𝑧 ) ) | 
						
							| 75 | 64 67 70 74 | ccased | ⊢ ( ( ( 𝐾  ∈  𝑉  ∧  (  <   Po  𝐵  ∧  (  I   ↾  𝐵 )  ⊆   ≤  ) )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( ( ( 𝑥  <  𝑦  ∨  𝑥  =  𝑦 )  ∧  ( 𝑦  <  𝑧  ∨  𝑦  =  𝑧 ) )  →  𝑥  ≤  𝑧 ) ) | 
						
							| 76 | 55 58 75 | syl2and | ⊢ ( ( ( 𝐾  ∈  𝑉  ∧  (  <   Po  𝐵  ∧  (  I   ↾  𝐵 )  ⊆   ≤  ) )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( ( 𝑥  ≤  𝑦  ∧  𝑦  ≤  𝑧 )  →  𝑥  ≤  𝑧 ) ) | 
						
							| 77 | 23 24 25 33 52 76 | isposd | ⊢ ( ( 𝐾  ∈  𝑉  ∧  (  <   Po  𝐵  ∧  (  I   ↾  𝐵 )  ⊆   ≤  ) )  →  𝐾  ∈  Poset ) | 
						
							| 78 | 77 | ex | ⊢ ( 𝐾  ∈  𝑉  →  ( (  <   Po  𝐵  ∧  (  I   ↾  𝐵 )  ⊆   ≤  )  →  𝐾  ∈  Poset ) ) | 
						
							| 79 | 22 78 | impbid2 | ⊢ ( 𝐾  ∈  𝑉  →  ( 𝐾  ∈  Poset  ↔  (  <   Po  𝐵  ∧  (  I   ↾  𝐵 )  ⊆   ≤  ) ) ) |