Metamath Proof Explorer


Theorem posprs

Description: A poset is a proset. (Contributed by Stefan O'Rear, 1-Feb-2015)

Ref Expression
Assertion posprs ( 𝐾 ∈ Poset → 𝐾 ∈ Proset )

Proof

Step Hyp Ref Expression
1 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
2 eqid ( le ‘ 𝐾 ) = ( le ‘ 𝐾 )
3 1 2 ispos2 ( 𝐾 ∈ Poset ↔ ( 𝐾 ∈ Proset ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( ( 𝑥 ( le ‘ 𝐾 ) 𝑦𝑦 ( le ‘ 𝐾 ) 𝑥 ) → 𝑥 = 𝑦 ) ) )
4 3 simplbi ( 𝐾 ∈ Poset → 𝐾 ∈ Proset )