Description: A poset is a proset. (Contributed by Stefan O'Rear, 1-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | posprs | ⊢ ( 𝐾 ∈ Poset → 𝐾 ∈ Proset ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 2 | eqid | ⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) | |
| 3 | 1 2 | ispos2 | ⊢ ( 𝐾 ∈ Poset ↔ ( 𝐾 ∈ Proset ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( ( 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐾 ) 𝑥 ) → 𝑥 = 𝑦 ) ) ) |
| 4 | 3 | simplbi | ⊢ ( 𝐾 ∈ Poset → 𝐾 ∈ Proset ) |