Metamath Proof Explorer
Description: A poset ordering is reflexive. (Contributed by NM, 11-Sep-2011)
(Proof shortened by OpenAI, 25-Mar-2020)
|
|
Ref |
Expression |
|
Hypotheses |
posi.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
|
|
posi.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
|
Assertion |
posref |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ≤ 𝑋 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
posi.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
posi.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
posprs |
⊢ ( 𝐾 ∈ Poset → 𝐾 ∈ Proset ) |
4 |
1 2
|
prsref |
⊢ ( ( 𝐾 ∈ Proset ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ≤ 𝑋 ) |
5 |
3 4
|
sylan |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ≤ 𝑋 ) |