Metamath Proof Explorer


Theorem posref

Description: A poset ordering is reflexive. (Contributed by NM, 11-Sep-2011) (Proof shortened by OpenAI, 25-Mar-2020)

Ref Expression
Hypotheses posi.b 𝐵 = ( Base ‘ 𝐾 )
posi.l = ( le ‘ 𝐾 )
Assertion posref ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵 ) → 𝑋 𝑋 )

Proof

Step Hyp Ref Expression
1 posi.b 𝐵 = ( Base ‘ 𝐾 )
2 posi.l = ( le ‘ 𝐾 )
3 posprs ( 𝐾 ∈ Poset → 𝐾 ∈ Proset )
4 1 2 prsref ( ( 𝐾 ∈ Proset ∧ 𝑋𝐵 ) → 𝑋 𝑋 )
5 3 4 sylan ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵 ) → 𝑋 𝑋 )