Metamath Proof Explorer


Theorem poss

Description: Subset theorem for the partial ordering predicate. (Contributed by NM, 27-Mar-1997) (Proof shortened by Mario Carneiro, 18-Nov-2016)

Ref Expression
Assertion poss ( 𝐴𝐵 → ( 𝑅 Po 𝐵𝑅 Po 𝐴 ) )

Proof

Step Hyp Ref Expression
1 ssralv ( 𝐴𝐵 → ( ∀ 𝑥𝐵𝑦𝐵𝑧𝐵 ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) → ∀ 𝑥𝐴𝑦𝐵𝑧𝐵 ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) )
2 ss2ralv ( 𝐴𝐵 → ( ∀ 𝑦𝐵𝑧𝐵 ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) → ∀ 𝑦𝐴𝑧𝐴 ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) )
3 2 ralimdv ( 𝐴𝐵 → ( ∀ 𝑥𝐴𝑦𝐵𝑧𝐵 ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) → ∀ 𝑥𝐴𝑦𝐴𝑧𝐴 ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) )
4 1 3 syld ( 𝐴𝐵 → ( ∀ 𝑥𝐵𝑦𝐵𝑧𝐵 ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) → ∀ 𝑥𝐴𝑦𝐴𝑧𝐴 ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) )
5 df-po ( 𝑅 Po 𝐵 ↔ ∀ 𝑥𝐵𝑦𝐵𝑧𝐵 ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) )
6 df-po ( 𝑅 Po 𝐴 ↔ ∀ 𝑥𝐴𝑦𝐴𝑧𝐴 ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) )
7 4 5 6 3imtr4g ( 𝐴𝐵 → ( 𝑅 Po 𝐵𝑅 Po 𝐴 ) )