Description: Condition for a positive sum. (Contributed by Scott Fenton, 16-Dec-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | possumd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
possumd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
Assertion | possumd | ⊢ ( 𝜑 → ( 0 < ( 𝐴 + 𝐵 ) ↔ - 𝐵 < 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | possumd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
2 | possumd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
3 | 2 | renegcld | ⊢ ( 𝜑 → - 𝐵 ∈ ℝ ) |
4 | 3 1 | posdifd | ⊢ ( 𝜑 → ( - 𝐵 < 𝐴 ↔ 0 < ( 𝐴 − - 𝐵 ) ) ) |
5 | 1 | recnd | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
6 | 2 | recnd | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
7 | 5 6 | subnegd | ⊢ ( 𝜑 → ( 𝐴 − - 𝐵 ) = ( 𝐴 + 𝐵 ) ) |
8 | 7 | breq2d | ⊢ ( 𝜑 → ( 0 < ( 𝐴 − - 𝐵 ) ↔ 0 < ( 𝐴 + 𝐵 ) ) ) |
9 | 4 8 | bitr2d | ⊢ ( 𝜑 → ( 0 < ( 𝐴 + 𝐵 ) ↔ - 𝐵 < 𝐴 ) ) |