Description: A partial order is a transitive relation. (Contributed by NM, 27-Mar-1997)
Ref | Expression | ||
---|---|---|---|
Assertion | potr | ⊢ ( ( 𝑅 Po 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ( 𝐵 𝑅 𝐶 ∧ 𝐶 𝑅 𝐷 ) → 𝐵 𝑅 𝐷 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pocl | ⊢ ( 𝑅 Po 𝐴 → ( ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) → ( ¬ 𝐵 𝑅 𝐵 ∧ ( ( 𝐵 𝑅 𝐶 ∧ 𝐶 𝑅 𝐷 ) → 𝐵 𝑅 𝐷 ) ) ) ) | |
2 | 1 | imp | ⊢ ( ( 𝑅 Po 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ¬ 𝐵 𝑅 𝐵 ∧ ( ( 𝐵 𝑅 𝐶 ∧ 𝐶 𝑅 𝐷 ) → 𝐵 𝑅 𝐷 ) ) ) |
3 | 2 | simprd | ⊢ ( ( 𝑅 Po 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ( 𝐵 𝑅 𝐶 ∧ 𝐶 𝑅 𝐷 ) → 𝐵 𝑅 𝐷 ) ) |