Metamath Proof Explorer


Theorem potr

Description: A partial order is a transitive relation. (Contributed by NM, 27-Mar-1997)

Ref Expression
Assertion potr ( ( 𝑅 Po 𝐴 ∧ ( 𝐵𝐴𝐶𝐴𝐷𝐴 ) ) → ( ( 𝐵 𝑅 𝐶𝐶 𝑅 𝐷 ) → 𝐵 𝑅 𝐷 ) )

Proof

Step Hyp Ref Expression
1 pocl ( 𝑅 Po 𝐴 → ( ( 𝐵𝐴𝐶𝐴𝐷𝐴 ) → ( ¬ 𝐵 𝑅 𝐵 ∧ ( ( 𝐵 𝑅 𝐶𝐶 𝑅 𝐷 ) → 𝐵 𝑅 𝐷 ) ) ) )
2 1 imp ( ( 𝑅 Po 𝐴 ∧ ( 𝐵𝐴𝐶𝐴𝐷𝐴 ) ) → ( ¬ 𝐵 𝑅 𝐵 ∧ ( ( 𝐵 𝑅 𝐶𝐶 𝑅 𝐷 ) → 𝐵 𝑅 𝐷 ) ) )
3 2 simprd ( ( 𝑅 Po 𝐴 ∧ ( 𝐵𝐴𝐶𝐴𝐷𝐴 ) ) → ( ( 𝐵 𝑅 𝐶𝐶 𝑅 𝐷 ) → 𝐵 𝑅 𝐷 ) )