Step |
Hyp |
Ref |
Expression |
1 |
|
poxp.1 |
⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 × 𝐵 ) ) ∧ ( ( 1st ‘ 𝑥 ) 𝑅 ( 1st ‘ 𝑦 ) ∨ ( ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ∧ ( 2nd ‘ 𝑥 ) 𝑆 ( 2nd ‘ 𝑦 ) ) ) ) } |
2 |
|
elxp |
⊢ ( 𝑡 ∈ ( 𝐴 × 𝐵 ) ↔ ∃ 𝑎 ∃ 𝑏 ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ) |
3 |
|
elxp |
⊢ ( 𝑢 ∈ ( 𝐴 × 𝐵 ) ↔ ∃ 𝑐 ∃ 𝑑 ( 𝑢 = 〈 𝑐 , 𝑑 〉 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ) ) |
4 |
|
elxp |
⊢ ( 𝑣 ∈ ( 𝐴 × 𝐵 ) ↔ ∃ 𝑒 ∃ 𝑓 ( 𝑣 = 〈 𝑒 , 𝑓 〉 ∧ ( 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵 ) ) ) |
5 |
|
3an6 |
⊢ ( ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( 𝑢 = 〈 𝑐 , 𝑑 〉 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ) ∧ ( 𝑣 = 〈 𝑒 , 𝑓 〉 ∧ ( 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵 ) ) ) ↔ ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ 𝑢 = 〈 𝑐 , 𝑑 〉 ∧ 𝑣 = 〈 𝑒 , 𝑓 〉 ) ∧ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ∧ ( 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵 ) ) ) ) |
6 |
|
poirr |
⊢ ( ( 𝑅 Po 𝐴 ∧ 𝑎 ∈ 𝐴 ) → ¬ 𝑎 𝑅 𝑎 ) |
7 |
6
|
ex |
⊢ ( 𝑅 Po 𝐴 → ( 𝑎 ∈ 𝐴 → ¬ 𝑎 𝑅 𝑎 ) ) |
8 |
|
poirr |
⊢ ( ( 𝑆 Po 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ¬ 𝑏 𝑆 𝑏 ) |
9 |
8
|
intnand |
⊢ ( ( 𝑆 Po 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ¬ ( 𝑎 = 𝑎 ∧ 𝑏 𝑆 𝑏 ) ) |
10 |
9
|
ex |
⊢ ( 𝑆 Po 𝐵 → ( 𝑏 ∈ 𝐵 → ¬ ( 𝑎 = 𝑎 ∧ 𝑏 𝑆 𝑏 ) ) ) |
11 |
7 10
|
im2anan9 |
⊢ ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) → ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( ¬ 𝑎 𝑅 𝑎 ∧ ¬ ( 𝑎 = 𝑎 ∧ 𝑏 𝑆 𝑏 ) ) ) ) |
12 |
|
ioran |
⊢ ( ¬ ( 𝑎 𝑅 𝑎 ∨ ( 𝑎 = 𝑎 ∧ 𝑏 𝑆 𝑏 ) ) ↔ ( ¬ 𝑎 𝑅 𝑎 ∧ ¬ ( 𝑎 = 𝑎 ∧ 𝑏 𝑆 𝑏 ) ) ) |
13 |
11 12
|
syl6ibr |
⊢ ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) → ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ¬ ( 𝑎 𝑅 𝑎 ∨ ( 𝑎 = 𝑎 ∧ 𝑏 𝑆 𝑏 ) ) ) ) |
14 |
13
|
imp |
⊢ ( ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ¬ ( 𝑎 𝑅 𝑎 ∨ ( 𝑎 = 𝑎 ∧ 𝑏 𝑆 𝑏 ) ) ) |
15 |
14
|
intnand |
⊢ ( ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ¬ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑎 ∨ ( 𝑎 = 𝑎 ∧ 𝑏 𝑆 𝑏 ) ) ) ) |
16 |
15
|
3ad2antr1 |
⊢ ( ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ∧ ( 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵 ) ) ) → ¬ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑎 ∨ ( 𝑎 = 𝑎 ∧ 𝑏 𝑆 𝑏 ) ) ) ) |
17 |
|
an4 |
⊢ ( ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ) ∧ ( ( ( 𝑐 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ∧ ( 𝑑 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) ∧ ( 𝑐 𝑅 𝑒 ∨ ( 𝑐 = 𝑒 ∧ 𝑑 𝑆 𝑓 ) ) ) ) ↔ ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ∧ ( ( 𝑐 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ∧ ( 𝑑 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) ) ∧ ( ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ∧ ( 𝑐 𝑅 𝑒 ∨ ( 𝑐 = 𝑒 ∧ 𝑑 𝑆 𝑓 ) ) ) ) ) |
18 |
|
3an6 |
⊢ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ∧ ( 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵 ) ) ↔ ( ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) ) |
19 |
|
potr |
⊢ ( ( 𝑅 Po 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ) → ( ( 𝑎 𝑅 𝑐 ∧ 𝑐 𝑅 𝑒 ) → 𝑎 𝑅 𝑒 ) ) |
20 |
19
|
3impia |
⊢ ( ( 𝑅 Po 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ∧ ( 𝑎 𝑅 𝑐 ∧ 𝑐 𝑅 𝑒 ) ) → 𝑎 𝑅 𝑒 ) |
21 |
20
|
orcd |
⊢ ( ( 𝑅 Po 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ∧ ( 𝑎 𝑅 𝑐 ∧ 𝑐 𝑅 𝑒 ) ) → ( 𝑎 𝑅 𝑒 ∨ ( 𝑎 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ) ) |
22 |
21
|
3expia |
⊢ ( ( 𝑅 Po 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ) → ( ( 𝑎 𝑅 𝑐 ∧ 𝑐 𝑅 𝑒 ) → ( 𝑎 𝑅 𝑒 ∨ ( 𝑎 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ) ) ) |
23 |
22
|
expdimp |
⊢ ( ( ( 𝑅 Po 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ) ∧ 𝑎 𝑅 𝑐 ) → ( 𝑐 𝑅 𝑒 → ( 𝑎 𝑅 𝑒 ∨ ( 𝑎 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ) ) ) |
24 |
|
breq2 |
⊢ ( 𝑐 = 𝑒 → ( 𝑎 𝑅 𝑐 ↔ 𝑎 𝑅 𝑒 ) ) |
25 |
24
|
biimpa |
⊢ ( ( 𝑐 = 𝑒 ∧ 𝑎 𝑅 𝑐 ) → 𝑎 𝑅 𝑒 ) |
26 |
25
|
orcd |
⊢ ( ( 𝑐 = 𝑒 ∧ 𝑎 𝑅 𝑐 ) → ( 𝑎 𝑅 𝑒 ∨ ( 𝑎 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ) ) |
27 |
26
|
expcom |
⊢ ( 𝑎 𝑅 𝑐 → ( 𝑐 = 𝑒 → ( 𝑎 𝑅 𝑒 ∨ ( 𝑎 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ) ) ) |
28 |
27
|
adantrd |
⊢ ( 𝑎 𝑅 𝑐 → ( ( 𝑐 = 𝑒 ∧ 𝑑 𝑆 𝑓 ) → ( 𝑎 𝑅 𝑒 ∨ ( 𝑎 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ) ) ) |
29 |
28
|
adantl |
⊢ ( ( ( 𝑅 Po 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ) ∧ 𝑎 𝑅 𝑐 ) → ( ( 𝑐 = 𝑒 ∧ 𝑑 𝑆 𝑓 ) → ( 𝑎 𝑅 𝑒 ∨ ( 𝑎 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ) ) ) |
30 |
23 29
|
jaod |
⊢ ( ( ( 𝑅 Po 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ) ∧ 𝑎 𝑅 𝑐 ) → ( ( 𝑐 𝑅 𝑒 ∨ ( 𝑐 = 𝑒 ∧ 𝑑 𝑆 𝑓 ) ) → ( 𝑎 𝑅 𝑒 ∨ ( 𝑎 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ) ) ) |
31 |
30
|
ex |
⊢ ( ( 𝑅 Po 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ) → ( 𝑎 𝑅 𝑐 → ( ( 𝑐 𝑅 𝑒 ∨ ( 𝑐 = 𝑒 ∧ 𝑑 𝑆 𝑓 ) ) → ( 𝑎 𝑅 𝑒 ∨ ( 𝑎 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ) ) ) ) |
32 |
|
potr |
⊢ ( ( 𝑆 Po 𝐵 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) → ( ( 𝑏 𝑆 𝑑 ∧ 𝑑 𝑆 𝑓 ) → 𝑏 𝑆 𝑓 ) ) |
33 |
32
|
expdimp |
⊢ ( ( ( 𝑆 Po 𝐵 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) ∧ 𝑏 𝑆 𝑑 ) → ( 𝑑 𝑆 𝑓 → 𝑏 𝑆 𝑓 ) ) |
34 |
33
|
anim2d |
⊢ ( ( ( 𝑆 Po 𝐵 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) ∧ 𝑏 𝑆 𝑑 ) → ( ( 𝑐 = 𝑒 ∧ 𝑑 𝑆 𝑓 ) → ( 𝑐 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ) ) |
35 |
34
|
orim2d |
⊢ ( ( ( 𝑆 Po 𝐵 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) ∧ 𝑏 𝑆 𝑑 ) → ( ( 𝑐 𝑅 𝑒 ∨ ( 𝑐 = 𝑒 ∧ 𝑑 𝑆 𝑓 ) ) → ( 𝑐 𝑅 𝑒 ∨ ( 𝑐 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ) ) ) |
36 |
|
breq1 |
⊢ ( 𝑎 = 𝑐 → ( 𝑎 𝑅 𝑒 ↔ 𝑐 𝑅 𝑒 ) ) |
37 |
|
equequ1 |
⊢ ( 𝑎 = 𝑐 → ( 𝑎 = 𝑒 ↔ 𝑐 = 𝑒 ) ) |
38 |
37
|
anbi1d |
⊢ ( 𝑎 = 𝑐 → ( ( 𝑎 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ↔ ( 𝑐 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ) ) |
39 |
36 38
|
orbi12d |
⊢ ( 𝑎 = 𝑐 → ( ( 𝑎 𝑅 𝑒 ∨ ( 𝑎 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ) ↔ ( 𝑐 𝑅 𝑒 ∨ ( 𝑐 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ) ) ) |
40 |
39
|
imbi2d |
⊢ ( 𝑎 = 𝑐 → ( ( ( 𝑐 𝑅 𝑒 ∨ ( 𝑐 = 𝑒 ∧ 𝑑 𝑆 𝑓 ) ) → ( 𝑎 𝑅 𝑒 ∨ ( 𝑎 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ) ) ↔ ( ( 𝑐 𝑅 𝑒 ∨ ( 𝑐 = 𝑒 ∧ 𝑑 𝑆 𝑓 ) ) → ( 𝑐 𝑅 𝑒 ∨ ( 𝑐 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ) ) ) ) |
41 |
35 40
|
syl5ibr |
⊢ ( 𝑎 = 𝑐 → ( ( ( 𝑆 Po 𝐵 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) ∧ 𝑏 𝑆 𝑑 ) → ( ( 𝑐 𝑅 𝑒 ∨ ( 𝑐 = 𝑒 ∧ 𝑑 𝑆 𝑓 ) ) → ( 𝑎 𝑅 𝑒 ∨ ( 𝑎 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ) ) ) ) |
42 |
41
|
expd |
⊢ ( 𝑎 = 𝑐 → ( ( 𝑆 Po 𝐵 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) → ( 𝑏 𝑆 𝑑 → ( ( 𝑐 𝑅 𝑒 ∨ ( 𝑐 = 𝑒 ∧ 𝑑 𝑆 𝑓 ) ) → ( 𝑎 𝑅 𝑒 ∨ ( 𝑎 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ) ) ) ) ) |
43 |
42
|
com12 |
⊢ ( ( 𝑆 Po 𝐵 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) → ( 𝑎 = 𝑐 → ( 𝑏 𝑆 𝑑 → ( ( 𝑐 𝑅 𝑒 ∨ ( 𝑐 = 𝑒 ∧ 𝑑 𝑆 𝑓 ) ) → ( 𝑎 𝑅 𝑒 ∨ ( 𝑎 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ) ) ) ) ) |
44 |
43
|
impd |
⊢ ( ( 𝑆 Po 𝐵 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) → ( ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) → ( ( 𝑐 𝑅 𝑒 ∨ ( 𝑐 = 𝑒 ∧ 𝑑 𝑆 𝑓 ) ) → ( 𝑎 𝑅 𝑒 ∨ ( 𝑎 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ) ) ) ) |
45 |
31 44
|
jaao |
⊢ ( ( ( 𝑅 Po 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ) ∧ ( 𝑆 Po 𝐵 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) ) → ( ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) → ( ( 𝑐 𝑅 𝑒 ∨ ( 𝑐 = 𝑒 ∧ 𝑑 𝑆 𝑓 ) ) → ( 𝑎 𝑅 𝑒 ∨ ( 𝑎 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ) ) ) ) |
46 |
45
|
impd |
⊢ ( ( ( 𝑅 Po 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ) ∧ ( 𝑆 Po 𝐵 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) ) → ( ( ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ∧ ( 𝑐 𝑅 𝑒 ∨ ( 𝑐 = 𝑒 ∧ 𝑑 𝑆 𝑓 ) ) ) → ( 𝑎 𝑅 𝑒 ∨ ( 𝑎 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ) ) ) |
47 |
46
|
an4s |
⊢ ( ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) ) → ( ( ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ∧ ( 𝑐 𝑅 𝑒 ∨ ( 𝑐 = 𝑒 ∧ 𝑑 𝑆 𝑓 ) ) ) → ( 𝑎 𝑅 𝑒 ∨ ( 𝑎 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ) ) ) |
48 |
18 47
|
sylan2b |
⊢ ( ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ∧ ( 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵 ) ) ) → ( ( ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ∧ ( 𝑐 𝑅 𝑒 ∨ ( 𝑐 = 𝑒 ∧ 𝑑 𝑆 𝑓 ) ) ) → ( 𝑎 𝑅 𝑒 ∨ ( 𝑎 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ) ) ) |
49 |
|
an4 |
⊢ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵 ) ) ↔ ( ( 𝑎 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) ) |
50 |
49
|
biimpi |
⊢ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵 ) ) → ( ( 𝑎 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) ) |
51 |
50
|
3adant2 |
⊢ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ∧ ( 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵 ) ) → ( ( 𝑎 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) ) |
52 |
51
|
adantl |
⊢ ( ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ∧ ( 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵 ) ) ) → ( ( 𝑎 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) ) |
53 |
48 52
|
jctild |
⊢ ( ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ∧ ( 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵 ) ) ) → ( ( ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ∧ ( 𝑐 𝑅 𝑒 ∨ ( 𝑐 = 𝑒 ∧ 𝑑 𝑆 𝑓 ) ) ) → ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑒 ∨ ( 𝑎 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ) ) ) ) |
54 |
53
|
adantld |
⊢ ( ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ∧ ( 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵 ) ) ) → ( ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ∧ ( ( 𝑐 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ∧ ( 𝑑 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) ) ∧ ( ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ∧ ( 𝑐 𝑅 𝑒 ∨ ( 𝑐 = 𝑒 ∧ 𝑑 𝑆 𝑓 ) ) ) ) → ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑒 ∨ ( 𝑎 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ) ) ) ) |
55 |
17 54
|
syl5bi |
⊢ ( ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ∧ ( 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵 ) ) ) → ( ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ) ∧ ( ( ( 𝑐 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ∧ ( 𝑑 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) ∧ ( 𝑐 𝑅 𝑒 ∨ ( 𝑐 = 𝑒 ∧ 𝑑 𝑆 𝑓 ) ) ) ) → ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑒 ∨ ( 𝑎 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ) ) ) ) |
56 |
16 55
|
jca |
⊢ ( ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ∧ ( 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵 ) ) ) → ( ¬ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑎 ∨ ( 𝑎 = 𝑎 ∧ 𝑏 𝑆 𝑏 ) ) ) ∧ ( ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ) ∧ ( ( ( 𝑐 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ∧ ( 𝑑 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) ∧ ( 𝑐 𝑅 𝑒 ∨ ( 𝑐 = 𝑒 ∧ 𝑑 𝑆 𝑓 ) ) ) ) → ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑒 ∨ ( 𝑎 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ) ) ) ) ) |
57 |
|
breq12 |
⊢ ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ 𝑡 = 〈 𝑎 , 𝑏 〉 ) → ( 𝑡 𝑇 𝑡 ↔ 〈 𝑎 , 𝑏 〉 𝑇 〈 𝑎 , 𝑏 〉 ) ) |
58 |
57
|
anidms |
⊢ ( 𝑡 = 〈 𝑎 , 𝑏 〉 → ( 𝑡 𝑇 𝑡 ↔ 〈 𝑎 , 𝑏 〉 𝑇 〈 𝑎 , 𝑏 〉 ) ) |
59 |
58
|
notbid |
⊢ ( 𝑡 = 〈 𝑎 , 𝑏 〉 → ( ¬ 𝑡 𝑇 𝑡 ↔ ¬ 〈 𝑎 , 𝑏 〉 𝑇 〈 𝑎 , 𝑏 〉 ) ) |
60 |
59
|
3ad2ant1 |
⊢ ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ 𝑢 = 〈 𝑐 , 𝑑 〉 ∧ 𝑣 = 〈 𝑒 , 𝑓 〉 ) → ( ¬ 𝑡 𝑇 𝑡 ↔ ¬ 〈 𝑎 , 𝑏 〉 𝑇 〈 𝑎 , 𝑏 〉 ) ) |
61 |
|
breq12 |
⊢ ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ 𝑢 = 〈 𝑐 , 𝑑 〉 ) → ( 𝑡 𝑇 𝑢 ↔ 〈 𝑎 , 𝑏 〉 𝑇 〈 𝑐 , 𝑑 〉 ) ) |
62 |
61
|
3adant3 |
⊢ ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ 𝑢 = 〈 𝑐 , 𝑑 〉 ∧ 𝑣 = 〈 𝑒 , 𝑓 〉 ) → ( 𝑡 𝑇 𝑢 ↔ 〈 𝑎 , 𝑏 〉 𝑇 〈 𝑐 , 𝑑 〉 ) ) |
63 |
|
breq12 |
⊢ ( ( 𝑢 = 〈 𝑐 , 𝑑 〉 ∧ 𝑣 = 〈 𝑒 , 𝑓 〉 ) → ( 𝑢 𝑇 𝑣 ↔ 〈 𝑐 , 𝑑 〉 𝑇 〈 𝑒 , 𝑓 〉 ) ) |
64 |
63
|
3adant1 |
⊢ ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ 𝑢 = 〈 𝑐 , 𝑑 〉 ∧ 𝑣 = 〈 𝑒 , 𝑓 〉 ) → ( 𝑢 𝑇 𝑣 ↔ 〈 𝑐 , 𝑑 〉 𝑇 〈 𝑒 , 𝑓 〉 ) ) |
65 |
62 64
|
anbi12d |
⊢ ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ 𝑢 = 〈 𝑐 , 𝑑 〉 ∧ 𝑣 = 〈 𝑒 , 𝑓 〉 ) → ( ( 𝑡 𝑇 𝑢 ∧ 𝑢 𝑇 𝑣 ) ↔ ( 〈 𝑎 , 𝑏 〉 𝑇 〈 𝑐 , 𝑑 〉 ∧ 〈 𝑐 , 𝑑 〉 𝑇 〈 𝑒 , 𝑓 〉 ) ) ) |
66 |
|
breq12 |
⊢ ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ 𝑣 = 〈 𝑒 , 𝑓 〉 ) → ( 𝑡 𝑇 𝑣 ↔ 〈 𝑎 , 𝑏 〉 𝑇 〈 𝑒 , 𝑓 〉 ) ) |
67 |
66
|
3adant2 |
⊢ ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ 𝑢 = 〈 𝑐 , 𝑑 〉 ∧ 𝑣 = 〈 𝑒 , 𝑓 〉 ) → ( 𝑡 𝑇 𝑣 ↔ 〈 𝑎 , 𝑏 〉 𝑇 〈 𝑒 , 𝑓 〉 ) ) |
68 |
65 67
|
imbi12d |
⊢ ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ 𝑢 = 〈 𝑐 , 𝑑 〉 ∧ 𝑣 = 〈 𝑒 , 𝑓 〉 ) → ( ( ( 𝑡 𝑇 𝑢 ∧ 𝑢 𝑇 𝑣 ) → 𝑡 𝑇 𝑣 ) ↔ ( ( 〈 𝑎 , 𝑏 〉 𝑇 〈 𝑐 , 𝑑 〉 ∧ 〈 𝑐 , 𝑑 〉 𝑇 〈 𝑒 , 𝑓 〉 ) → 〈 𝑎 , 𝑏 〉 𝑇 〈 𝑒 , 𝑓 〉 ) ) ) |
69 |
60 68
|
anbi12d |
⊢ ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ 𝑢 = 〈 𝑐 , 𝑑 〉 ∧ 𝑣 = 〈 𝑒 , 𝑓 〉 ) → ( ( ¬ 𝑡 𝑇 𝑡 ∧ ( ( 𝑡 𝑇 𝑢 ∧ 𝑢 𝑇 𝑣 ) → 𝑡 𝑇 𝑣 ) ) ↔ ( ¬ 〈 𝑎 , 𝑏 〉 𝑇 〈 𝑎 , 𝑏 〉 ∧ ( ( 〈 𝑎 , 𝑏 〉 𝑇 〈 𝑐 , 𝑑 〉 ∧ 〈 𝑐 , 𝑑 〉 𝑇 〈 𝑒 , 𝑓 〉 ) → 〈 𝑎 , 𝑏 〉 𝑇 〈 𝑒 , 𝑓 〉 ) ) ) ) |
70 |
1
|
xporderlem |
⊢ ( 〈 𝑎 , 𝑏 〉 𝑇 〈 𝑎 , 𝑏 〉 ↔ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑎 ∨ ( 𝑎 = 𝑎 ∧ 𝑏 𝑆 𝑏 ) ) ) ) |
71 |
70
|
notbii |
⊢ ( ¬ 〈 𝑎 , 𝑏 〉 𝑇 〈 𝑎 , 𝑏 〉 ↔ ¬ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑎 ∨ ( 𝑎 = 𝑎 ∧ 𝑏 𝑆 𝑏 ) ) ) ) |
72 |
1
|
xporderlem |
⊢ ( 〈 𝑎 , 𝑏 〉 𝑇 〈 𝑐 , 𝑑 〉 ↔ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ) ) |
73 |
1
|
xporderlem |
⊢ ( 〈 𝑐 , 𝑑 〉 𝑇 〈 𝑒 , 𝑓 〉 ↔ ( ( ( 𝑐 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ∧ ( 𝑑 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) ∧ ( 𝑐 𝑅 𝑒 ∨ ( 𝑐 = 𝑒 ∧ 𝑑 𝑆 𝑓 ) ) ) ) |
74 |
72 73
|
anbi12i |
⊢ ( ( 〈 𝑎 , 𝑏 〉 𝑇 〈 𝑐 , 𝑑 〉 ∧ 〈 𝑐 , 𝑑 〉 𝑇 〈 𝑒 , 𝑓 〉 ) ↔ ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ) ∧ ( ( ( 𝑐 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ∧ ( 𝑑 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) ∧ ( 𝑐 𝑅 𝑒 ∨ ( 𝑐 = 𝑒 ∧ 𝑑 𝑆 𝑓 ) ) ) ) ) |
75 |
1
|
xporderlem |
⊢ ( 〈 𝑎 , 𝑏 〉 𝑇 〈 𝑒 , 𝑓 〉 ↔ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑒 ∨ ( 𝑎 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ) ) ) |
76 |
74 75
|
imbi12i |
⊢ ( ( ( 〈 𝑎 , 𝑏 〉 𝑇 〈 𝑐 , 𝑑 〉 ∧ 〈 𝑐 , 𝑑 〉 𝑇 〈 𝑒 , 𝑓 〉 ) → 〈 𝑎 , 𝑏 〉 𝑇 〈 𝑒 , 𝑓 〉 ) ↔ ( ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ) ∧ ( ( ( 𝑐 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ∧ ( 𝑑 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) ∧ ( 𝑐 𝑅 𝑒 ∨ ( 𝑐 = 𝑒 ∧ 𝑑 𝑆 𝑓 ) ) ) ) → ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑒 ∨ ( 𝑎 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ) ) ) ) |
77 |
71 76
|
anbi12i |
⊢ ( ( ¬ 〈 𝑎 , 𝑏 〉 𝑇 〈 𝑎 , 𝑏 〉 ∧ ( ( 〈 𝑎 , 𝑏 〉 𝑇 〈 𝑐 , 𝑑 〉 ∧ 〈 𝑐 , 𝑑 〉 𝑇 〈 𝑒 , 𝑓 〉 ) → 〈 𝑎 , 𝑏 〉 𝑇 〈 𝑒 , 𝑓 〉 ) ) ↔ ( ¬ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑎 ∨ ( 𝑎 = 𝑎 ∧ 𝑏 𝑆 𝑏 ) ) ) ∧ ( ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ) ∧ ( ( ( 𝑐 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ∧ ( 𝑑 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) ∧ ( 𝑐 𝑅 𝑒 ∨ ( 𝑐 = 𝑒 ∧ 𝑑 𝑆 𝑓 ) ) ) ) → ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑒 ∨ ( 𝑎 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ) ) ) ) ) |
78 |
69 77
|
bitrdi |
⊢ ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ 𝑢 = 〈 𝑐 , 𝑑 〉 ∧ 𝑣 = 〈 𝑒 , 𝑓 〉 ) → ( ( ¬ 𝑡 𝑇 𝑡 ∧ ( ( 𝑡 𝑇 𝑢 ∧ 𝑢 𝑇 𝑣 ) → 𝑡 𝑇 𝑣 ) ) ↔ ( ¬ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑎 ∨ ( 𝑎 = 𝑎 ∧ 𝑏 𝑆 𝑏 ) ) ) ∧ ( ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑐 ∨ ( 𝑎 = 𝑐 ∧ 𝑏 𝑆 𝑑 ) ) ) ∧ ( ( ( 𝑐 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ∧ ( 𝑑 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) ∧ ( 𝑐 𝑅 𝑒 ∨ ( 𝑐 = 𝑒 ∧ 𝑑 𝑆 𝑓 ) ) ) ) → ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) ∧ ( 𝑎 𝑅 𝑒 ∨ ( 𝑎 = 𝑒 ∧ 𝑏 𝑆 𝑓 ) ) ) ) ) ) ) |
79 |
56 78
|
syl5ibr |
⊢ ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ 𝑢 = 〈 𝑐 , 𝑑 〉 ∧ 𝑣 = 〈 𝑒 , 𝑓 〉 ) → ( ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ∧ ( 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵 ) ) ) → ( ¬ 𝑡 𝑇 𝑡 ∧ ( ( 𝑡 𝑇 𝑢 ∧ 𝑢 𝑇 𝑣 ) → 𝑡 𝑇 𝑣 ) ) ) ) |
80 |
79
|
expcomd |
⊢ ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ 𝑢 = 〈 𝑐 , 𝑑 〉 ∧ 𝑣 = 〈 𝑒 , 𝑓 〉 ) → ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ∧ ( 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵 ) ) → ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) → ( ¬ 𝑡 𝑇 𝑡 ∧ ( ( 𝑡 𝑇 𝑢 ∧ 𝑢 𝑇 𝑣 ) → 𝑡 𝑇 𝑣 ) ) ) ) ) |
81 |
80
|
imp |
⊢ ( ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ 𝑢 = 〈 𝑐 , 𝑑 〉 ∧ 𝑣 = 〈 𝑒 , 𝑓 〉 ) ∧ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ∧ ( 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵 ) ) ) → ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) → ( ¬ 𝑡 𝑇 𝑡 ∧ ( ( 𝑡 𝑇 𝑢 ∧ 𝑢 𝑇 𝑣 ) → 𝑡 𝑇 𝑣 ) ) ) ) |
82 |
5 81
|
sylbi |
⊢ ( ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( 𝑢 = 〈 𝑐 , 𝑑 〉 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ) ∧ ( 𝑣 = 〈 𝑒 , 𝑓 〉 ∧ ( 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵 ) ) ) → ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) → ( ¬ 𝑡 𝑇 𝑡 ∧ ( ( 𝑡 𝑇 𝑢 ∧ 𝑢 𝑇 𝑣 ) → 𝑡 𝑇 𝑣 ) ) ) ) |
83 |
82
|
3exp |
⊢ ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑢 = 〈 𝑐 , 𝑑 〉 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ) → ( ( 𝑣 = 〈 𝑒 , 𝑓 〉 ∧ ( 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵 ) ) → ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) → ( ¬ 𝑡 𝑇 𝑡 ∧ ( ( 𝑡 𝑇 𝑢 ∧ 𝑢 𝑇 𝑣 ) → 𝑡 𝑇 𝑣 ) ) ) ) ) ) |
84 |
83
|
com3l |
⊢ ( ( 𝑢 = 〈 𝑐 , 𝑑 〉 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ) → ( ( 𝑣 = 〈 𝑒 , 𝑓 〉 ∧ ( 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵 ) ) → ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) → ( ¬ 𝑡 𝑇 𝑡 ∧ ( ( 𝑡 𝑇 𝑢 ∧ 𝑢 𝑇 𝑣 ) → 𝑡 𝑇 𝑣 ) ) ) ) ) ) |
85 |
84
|
exlimivv |
⊢ ( ∃ 𝑐 ∃ 𝑑 ( 𝑢 = 〈 𝑐 , 𝑑 〉 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ) → ( ( 𝑣 = 〈 𝑒 , 𝑓 〉 ∧ ( 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵 ) ) → ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) → ( ¬ 𝑡 𝑇 𝑡 ∧ ( ( 𝑡 𝑇 𝑢 ∧ 𝑢 𝑇 𝑣 ) → 𝑡 𝑇 𝑣 ) ) ) ) ) ) |
86 |
85
|
com3l |
⊢ ( ( 𝑣 = 〈 𝑒 , 𝑓 〉 ∧ ( 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵 ) ) → ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ( ∃ 𝑐 ∃ 𝑑 ( 𝑢 = 〈 𝑐 , 𝑑 〉 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ) → ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) → ( ¬ 𝑡 𝑇 𝑡 ∧ ( ( 𝑡 𝑇 𝑢 ∧ 𝑢 𝑇 𝑣 ) → 𝑡 𝑇 𝑣 ) ) ) ) ) ) |
87 |
86
|
exlimivv |
⊢ ( ∃ 𝑒 ∃ 𝑓 ( 𝑣 = 〈 𝑒 , 𝑓 〉 ∧ ( 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵 ) ) → ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ( ∃ 𝑐 ∃ 𝑑 ( 𝑢 = 〈 𝑐 , 𝑑 〉 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ) → ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) → ( ¬ 𝑡 𝑇 𝑡 ∧ ( ( 𝑡 𝑇 𝑢 ∧ 𝑢 𝑇 𝑣 ) → 𝑡 𝑇 𝑣 ) ) ) ) ) ) |
88 |
87
|
com3l |
⊢ ( ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ( ∃ 𝑐 ∃ 𝑑 ( 𝑢 = 〈 𝑐 , 𝑑 〉 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ) → ( ∃ 𝑒 ∃ 𝑓 ( 𝑣 = 〈 𝑒 , 𝑓 〉 ∧ ( 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵 ) ) → ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) → ( ¬ 𝑡 𝑇 𝑡 ∧ ( ( 𝑡 𝑇 𝑢 ∧ 𝑢 𝑇 𝑣 ) → 𝑡 𝑇 𝑣 ) ) ) ) ) ) |
89 |
88
|
exlimivv |
⊢ ( ∃ 𝑎 ∃ 𝑏 ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ( ∃ 𝑐 ∃ 𝑑 ( 𝑢 = 〈 𝑐 , 𝑑 〉 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ) → ( ∃ 𝑒 ∃ 𝑓 ( 𝑣 = 〈 𝑒 , 𝑓 〉 ∧ ( 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵 ) ) → ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) → ( ¬ 𝑡 𝑇 𝑡 ∧ ( ( 𝑡 𝑇 𝑢 ∧ 𝑢 𝑇 𝑣 ) → 𝑡 𝑇 𝑣 ) ) ) ) ) ) |
90 |
89
|
3imp |
⊢ ( ( ∃ 𝑎 ∃ 𝑏 ( 𝑡 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ∃ 𝑐 ∃ 𝑑 ( 𝑢 = 〈 𝑐 , 𝑑 〉 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ) ∧ ∃ 𝑒 ∃ 𝑓 ( 𝑣 = 〈 𝑒 , 𝑓 〉 ∧ ( 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵 ) ) ) → ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) → ( ¬ 𝑡 𝑇 𝑡 ∧ ( ( 𝑡 𝑇 𝑢 ∧ 𝑢 𝑇 𝑣 ) → 𝑡 𝑇 𝑣 ) ) ) ) |
91 |
2 3 4 90
|
syl3anb |
⊢ ( ( 𝑡 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑢 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 × 𝐵 ) ) → ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) → ( ¬ 𝑡 𝑇 𝑡 ∧ ( ( 𝑡 𝑇 𝑢 ∧ 𝑢 𝑇 𝑣 ) → 𝑡 𝑇 𝑣 ) ) ) ) |
92 |
91
|
3expia |
⊢ ( ( 𝑡 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑢 ∈ ( 𝐴 × 𝐵 ) ) → ( 𝑣 ∈ ( 𝐴 × 𝐵 ) → ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) → ( ¬ 𝑡 𝑇 𝑡 ∧ ( ( 𝑡 𝑇 𝑢 ∧ 𝑢 𝑇 𝑣 ) → 𝑡 𝑇 𝑣 ) ) ) ) ) |
93 |
92
|
com3r |
⊢ ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) → ( ( 𝑡 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑢 ∈ ( 𝐴 × 𝐵 ) ) → ( 𝑣 ∈ ( 𝐴 × 𝐵 ) → ( ¬ 𝑡 𝑇 𝑡 ∧ ( ( 𝑡 𝑇 𝑢 ∧ 𝑢 𝑇 𝑣 ) → 𝑡 𝑇 𝑣 ) ) ) ) ) |
94 |
93
|
imp |
⊢ ( ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝑡 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑢 ∈ ( 𝐴 × 𝐵 ) ) ) → ( 𝑣 ∈ ( 𝐴 × 𝐵 ) → ( ¬ 𝑡 𝑇 𝑡 ∧ ( ( 𝑡 𝑇 𝑢 ∧ 𝑢 𝑇 𝑣 ) → 𝑡 𝑇 𝑣 ) ) ) ) |
95 |
94
|
ralrimiv |
⊢ ( ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) ∧ ( 𝑡 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑢 ∈ ( 𝐴 × 𝐵 ) ) ) → ∀ 𝑣 ∈ ( 𝐴 × 𝐵 ) ( ¬ 𝑡 𝑇 𝑡 ∧ ( ( 𝑡 𝑇 𝑢 ∧ 𝑢 𝑇 𝑣 ) → 𝑡 𝑇 𝑣 ) ) ) |
96 |
95
|
ralrimivva |
⊢ ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) → ∀ 𝑡 ∈ ( 𝐴 × 𝐵 ) ∀ 𝑢 ∈ ( 𝐴 × 𝐵 ) ∀ 𝑣 ∈ ( 𝐴 × 𝐵 ) ( ¬ 𝑡 𝑇 𝑡 ∧ ( ( 𝑡 𝑇 𝑢 ∧ 𝑢 𝑇 𝑣 ) → 𝑡 𝑇 𝑣 ) ) ) |
97 |
|
df-po |
⊢ ( 𝑇 Po ( 𝐴 × 𝐵 ) ↔ ∀ 𝑡 ∈ ( 𝐴 × 𝐵 ) ∀ 𝑢 ∈ ( 𝐴 × 𝐵 ) ∀ 𝑣 ∈ ( 𝐴 × 𝐵 ) ( ¬ 𝑡 𝑇 𝑡 ∧ ( ( 𝑡 𝑇 𝑢 ∧ 𝑢 𝑇 𝑣 ) → 𝑡 𝑇 𝑣 ) ) ) |
98 |
96 97
|
sylibr |
⊢ ( ( 𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵 ) → 𝑇 Po ( 𝐴 × 𝐵 ) ) |