Metamath Proof Explorer


Theorem poxp3

Description: Triple Cartesian product partial ordering. (Contributed by Scott Fenton, 21-Aug-2024)

Ref Expression
Hypotheses xpord3.1 𝑈 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ ( ( ( ( 1st ‘ ( 1st𝑥 ) ) 𝑅 ( 1st ‘ ( 1st𝑦 ) ) ∨ ( 1st ‘ ( 1st𝑥 ) ) = ( 1st ‘ ( 1st𝑦 ) ) ) ∧ ( ( 2nd ‘ ( 1st𝑥 ) ) 𝑆 ( 2nd ‘ ( 1st𝑦 ) ) ∨ ( 2nd ‘ ( 1st𝑥 ) ) = ( 2nd ‘ ( 1st𝑦 ) ) ) ∧ ( ( 2nd𝑥 ) 𝑇 ( 2nd𝑦 ) ∨ ( 2nd𝑥 ) = ( 2nd𝑦 ) ) ) ∧ 𝑥𝑦 ) ) }
poxp3.1 ( 𝜑𝑅 Po 𝐴 )
poxp3.2 ( 𝜑𝑆 Po 𝐵 )
poxp3.3 ( 𝜑𝑇 Po 𝐶 )
Assertion poxp3 ( 𝜑𝑈 Po ( ( 𝐴 × 𝐵 ) × 𝐶 ) )

Proof

Step Hyp Ref Expression
1 xpord3.1 𝑈 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ ( ( ( ( 1st ‘ ( 1st𝑥 ) ) 𝑅 ( 1st ‘ ( 1st𝑦 ) ) ∨ ( 1st ‘ ( 1st𝑥 ) ) = ( 1st ‘ ( 1st𝑦 ) ) ) ∧ ( ( 2nd ‘ ( 1st𝑥 ) ) 𝑆 ( 2nd ‘ ( 1st𝑦 ) ) ∨ ( 2nd ‘ ( 1st𝑥 ) ) = ( 2nd ‘ ( 1st𝑦 ) ) ) ∧ ( ( 2nd𝑥 ) 𝑇 ( 2nd𝑦 ) ∨ ( 2nd𝑥 ) = ( 2nd𝑦 ) ) ) ∧ 𝑥𝑦 ) ) }
2 poxp3.1 ( 𝜑𝑅 Po 𝐴 )
3 poxp3.2 ( 𝜑𝑆 Po 𝐵 )
4 poxp3.3 ( 𝜑𝑇 Po 𝐶 )
5 el2xptp ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ↔ ∃ 𝑎𝐴𝑏𝐵𝑐𝐶 𝑝 = ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ )
6 neirr ¬ 𝑎𝑎
7 neirr ¬ 𝑏𝑏
8 neirr ¬ 𝑐𝑐
9 6 7 8 3pm3.2ni ¬ ( 𝑎𝑎𝑏𝑏𝑐𝑐 )
10 9 intnan ¬ ( ( ( 𝑎 𝑅 𝑎𝑎 = 𝑎 ) ∧ ( 𝑏 𝑆 𝑏𝑏 = 𝑏 ) ∧ ( 𝑐 𝑇 𝑐𝑐 = 𝑐 ) ) ∧ ( 𝑎𝑎𝑏𝑏𝑐𝑐 ) )
11 simp3 ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( ( ( 𝑎 𝑅 𝑎𝑎 = 𝑎 ) ∧ ( 𝑏 𝑆 𝑏𝑏 = 𝑏 ) ∧ ( 𝑐 𝑇 𝑐𝑐 = 𝑐 ) ) ∧ ( 𝑎𝑎𝑏𝑏𝑐𝑐 ) ) ) → ( ( ( 𝑎 𝑅 𝑎𝑎 = 𝑎 ) ∧ ( 𝑏 𝑆 𝑏𝑏 = 𝑏 ) ∧ ( 𝑐 𝑇 𝑐𝑐 = 𝑐 ) ) ∧ ( 𝑎𝑎𝑏𝑏𝑐𝑐 ) ) )
12 10 11 mto ¬ ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( ( ( 𝑎 𝑅 𝑎𝑎 = 𝑎 ) ∧ ( 𝑏 𝑆 𝑏𝑏 = 𝑏 ) ∧ ( 𝑐 𝑇 𝑐𝑐 = 𝑐 ) ) ∧ ( 𝑎𝑎𝑏𝑏𝑐𝑐 ) ) )
13 breq12 ( ( 𝑝 = ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ∧ 𝑝 = ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ) → ( 𝑝 𝑈 𝑝 ↔ ⟨ 𝑎 , 𝑏 , 𝑐𝑈𝑎 , 𝑏 , 𝑐 ⟩ ) )
14 13 anidms ( 𝑝 = ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ → ( 𝑝 𝑈 𝑝 ↔ ⟨ 𝑎 , 𝑏 , 𝑐𝑈𝑎 , 𝑏 , 𝑐 ⟩ ) )
15 1 xpord3lem ( ⟨ 𝑎 , 𝑏 , 𝑐𝑈𝑎 , 𝑏 , 𝑐 ⟩ ↔ ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( ( ( 𝑎 𝑅 𝑎𝑎 = 𝑎 ) ∧ ( 𝑏 𝑆 𝑏𝑏 = 𝑏 ) ∧ ( 𝑐 𝑇 𝑐𝑐 = 𝑐 ) ) ∧ ( 𝑎𝑎𝑏𝑏𝑐𝑐 ) ) ) )
16 14 15 bitrdi ( 𝑝 = ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ → ( 𝑝 𝑈 𝑝 ↔ ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( ( ( 𝑎 𝑅 𝑎𝑎 = 𝑎 ) ∧ ( 𝑏 𝑆 𝑏𝑏 = 𝑏 ) ∧ ( 𝑐 𝑇 𝑐𝑐 = 𝑐 ) ) ∧ ( 𝑎𝑎𝑏𝑏𝑐𝑐 ) ) ) ) )
17 12 16 mtbiri ( 𝑝 = ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ → ¬ 𝑝 𝑈 𝑝 )
18 17 rexlimivw ( ∃ 𝑐𝐶 𝑝 = ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ → ¬ 𝑝 𝑈 𝑝 )
19 18 rexlimivw ( ∃ 𝑏𝐵𝑐𝐶 𝑝 = ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ → ¬ 𝑝 𝑈 𝑝 )
20 19 rexlimivw ( ∃ 𝑎𝐴𝑏𝐵𝑐𝐶 𝑝 = ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ → ¬ 𝑝 𝑈 𝑝 )
21 5 20 sylbi ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) → ¬ 𝑝 𝑈 𝑝 )
22 21 adantl ( ( 𝜑𝑝 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ) → ¬ 𝑝 𝑈 𝑝 )
23 3reeanv ( ∃ 𝑎𝐴𝑑𝐴𝑔𝐴 ( ∃ 𝑏𝐵𝑐𝐶 𝑝 = ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ∧ ∃ 𝑒𝐵𝑓𝐶 𝑞 = ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∧ ∃ 𝐵𝑖𝐶 𝑟 = ⟨ 𝑔 , , 𝑖 ⟩ ) ↔ ( ∃ 𝑎𝐴𝑏𝐵𝑐𝐶 𝑝 = ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ∧ ∃ 𝑑𝐴𝑒𝐵𝑓𝐶 𝑞 = ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∧ ∃ 𝑔𝐴𝐵𝑖𝐶 𝑟 = ⟨ 𝑔 , , 𝑖 ⟩ ) )
24 3reeanv ( ∃ 𝑐𝐶𝑓𝐶𝑖𝐶 ( 𝑝 = ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ∧ 𝑞 = ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∧ 𝑟 = ⟨ 𝑔 , , 𝑖 ⟩ ) ↔ ( ∃ 𝑐𝐶 𝑝 = ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ∧ ∃ 𝑓𝐶 𝑞 = ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∧ ∃ 𝑖𝐶 𝑟 = ⟨ 𝑔 , , 𝑖 ⟩ ) )
25 24 rexbii ( ∃ 𝐵𝑐𝐶𝑓𝐶𝑖𝐶 ( 𝑝 = ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ∧ 𝑞 = ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∧ 𝑟 = ⟨ 𝑔 , , 𝑖 ⟩ ) ↔ ∃ 𝐵 ( ∃ 𝑐𝐶 𝑝 = ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ∧ ∃ 𝑓𝐶 𝑞 = ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∧ ∃ 𝑖𝐶 𝑟 = ⟨ 𝑔 , , 𝑖 ⟩ ) )
26 25 2rexbii ( ∃ 𝑏𝐵𝑒𝐵𝐵𝑐𝐶𝑓𝐶𝑖𝐶 ( 𝑝 = ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ∧ 𝑞 = ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∧ 𝑟 = ⟨ 𝑔 , , 𝑖 ⟩ ) ↔ ∃ 𝑏𝐵𝑒𝐵𝐵 ( ∃ 𝑐𝐶 𝑝 = ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ∧ ∃ 𝑓𝐶 𝑞 = ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∧ ∃ 𝑖𝐶 𝑟 = ⟨ 𝑔 , , 𝑖 ⟩ ) )
27 3reeanv ( ∃ 𝑏𝐵𝑒𝐵𝐵 ( ∃ 𝑐𝐶 𝑝 = ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ∧ ∃ 𝑓𝐶 𝑞 = ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∧ ∃ 𝑖𝐶 𝑟 = ⟨ 𝑔 , , 𝑖 ⟩ ) ↔ ( ∃ 𝑏𝐵𝑐𝐶 𝑝 = ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ∧ ∃ 𝑒𝐵𝑓𝐶 𝑞 = ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∧ ∃ 𝐵𝑖𝐶 𝑟 = ⟨ 𝑔 , , 𝑖 ⟩ ) )
28 26 27 bitri ( ∃ 𝑏𝐵𝑒𝐵𝐵𝑐𝐶𝑓𝐶𝑖𝐶 ( 𝑝 = ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ∧ 𝑞 = ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∧ 𝑟 = ⟨ 𝑔 , , 𝑖 ⟩ ) ↔ ( ∃ 𝑏𝐵𝑐𝐶 𝑝 = ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ∧ ∃ 𝑒𝐵𝑓𝐶 𝑞 = ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∧ ∃ 𝐵𝑖𝐶 𝑟 = ⟨ 𝑔 , , 𝑖 ⟩ ) )
29 28 rexbii ( ∃ 𝑔𝐴𝑏𝐵𝑒𝐵𝐵𝑐𝐶𝑓𝐶𝑖𝐶 ( 𝑝 = ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ∧ 𝑞 = ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∧ 𝑟 = ⟨ 𝑔 , , 𝑖 ⟩ ) ↔ ∃ 𝑔𝐴 ( ∃ 𝑏𝐵𝑐𝐶 𝑝 = ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ∧ ∃ 𝑒𝐵𝑓𝐶 𝑞 = ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∧ ∃ 𝐵𝑖𝐶 𝑟 = ⟨ 𝑔 , , 𝑖 ⟩ ) )
30 29 2rexbii ( ∃ 𝑎𝐴𝑑𝐴𝑔𝐴𝑏𝐵𝑒𝐵𝐵𝑐𝐶𝑓𝐶𝑖𝐶 ( 𝑝 = ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ∧ 𝑞 = ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∧ 𝑟 = ⟨ 𝑔 , , 𝑖 ⟩ ) ↔ ∃ 𝑎𝐴𝑑𝐴𝑔𝐴 ( ∃ 𝑏𝐵𝑐𝐶 𝑝 = ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ∧ ∃ 𝑒𝐵𝑓𝐶 𝑞 = ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∧ ∃ 𝐵𝑖𝐶 𝑟 = ⟨ 𝑔 , , 𝑖 ⟩ ) )
31 el2xptp ( 𝑞 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ↔ ∃ 𝑑𝐴𝑒𝐵𝑓𝐶 𝑞 = ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ )
32 el2xptp ( 𝑟 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ↔ ∃ 𝑔𝐴𝐵𝑖𝐶 𝑟 = ⟨ 𝑔 , , 𝑖 ⟩ )
33 5 31 32 3anbi123i ( ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑞 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑟 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ) ↔ ( ∃ 𝑎𝐴𝑏𝐵𝑐𝐶 𝑝 = ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ∧ ∃ 𝑑𝐴𝑒𝐵𝑓𝐶 𝑞 = ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∧ ∃ 𝑔𝐴𝐵𝑖𝐶 𝑟 = ⟨ 𝑔 , , 𝑖 ⟩ ) )
34 23 30 33 3bitr4ri ( ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑞 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑟 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ) ↔ ∃ 𝑎𝐴𝑑𝐴𝑔𝐴𝑏𝐵𝑒𝐵𝐵𝑐𝐶𝑓𝐶𝑖𝐶 ( 𝑝 = ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ∧ 𝑞 = ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∧ 𝑟 = ⟨ 𝑔 , , 𝑖 ⟩ ) )
35 simpr1l ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) → ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) )
36 simpr2r ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) → ( 𝑔𝐴𝐵𝑖𝐶 ) )
37 simp1l1 ( ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) → 𝑎𝐴 )
38 simp2l1 ( ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) → 𝑑𝐴 )
39 simp2r1 ( ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) → 𝑔𝐴 )
40 37 38 39 3jca ( ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) → ( 𝑎𝐴𝑑𝐴𝑔𝐴 ) )
41 potr ( ( 𝑅 Po 𝐴 ∧ ( 𝑎𝐴𝑑𝐴𝑔𝐴 ) ) → ( ( 𝑎 𝑅 𝑑𝑑 𝑅 𝑔 ) → 𝑎 𝑅 𝑔 ) )
42 2 40 41 syl2an ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) → ( ( 𝑎 𝑅 𝑑𝑑 𝑅 𝑔 ) → 𝑎 𝑅 𝑔 ) )
43 42 expd ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) → ( 𝑎 𝑅 𝑑 → ( 𝑑 𝑅 𝑔𝑎 𝑅 𝑔 ) ) )
44 breq1 ( 𝑎 = 𝑑 → ( 𝑎 𝑅 𝑔𝑑 𝑅 𝑔 ) )
45 44 biimprd ( 𝑎 = 𝑑 → ( 𝑑 𝑅 𝑔𝑎 𝑅 𝑔 ) )
46 45 a1i ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) → ( 𝑎 = 𝑑 → ( 𝑑 𝑅 𝑔𝑎 𝑅 𝑔 ) ) )
47 simpll1 ( ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) → ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) )
48 47 3ad2ant3 ( ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) → ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) )
49 48 adantl ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) → ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) )
50 43 46 49 mpjaod ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) → ( 𝑑 𝑅 𝑔𝑎 𝑅 𝑔 ) )
51 orc ( 𝑎 𝑅 𝑔 → ( 𝑎 𝑅 𝑔𝑎 = 𝑔 ) )
52 50 51 syl6 ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) → ( 𝑑 𝑅 𝑔 → ( 𝑎 𝑅 𝑔𝑎 = 𝑔 ) ) )
53 breq2 ( 𝑑 = 𝑔 → ( 𝑎 𝑅 𝑑𝑎 𝑅 𝑔 ) )
54 equequ2 ( 𝑑 = 𝑔 → ( 𝑎 = 𝑑𝑎 = 𝑔 ) )
55 53 54 orbi12d ( 𝑑 = 𝑔 → ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ↔ ( 𝑎 𝑅 𝑔𝑎 = 𝑔 ) ) )
56 49 55 syl5ibcom ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) → ( 𝑑 = 𝑔 → ( 𝑎 𝑅 𝑔𝑎 = 𝑔 ) ) )
57 simprl1 ( ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) → ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) )
58 57 3ad2ant3 ( ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) → ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) )
59 58 adantl ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) → ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) )
60 52 56 59 mpjaod ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) → ( 𝑎 𝑅 𝑔𝑎 = 𝑔 ) )
61 simp1l2 ( ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) → 𝑏𝐵 )
62 simp2l2 ( ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) → 𝑒𝐵 )
63 simp2r2 ( ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) → 𝐵 )
64 61 62 63 3jca ( ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) → ( 𝑏𝐵𝑒𝐵𝐵 ) )
65 potr ( ( 𝑆 Po 𝐵 ∧ ( 𝑏𝐵𝑒𝐵𝐵 ) ) → ( ( 𝑏 𝑆 𝑒𝑒 𝑆 ) → 𝑏 𝑆 ) )
66 3 64 65 syl2an ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) → ( ( 𝑏 𝑆 𝑒𝑒 𝑆 ) → 𝑏 𝑆 ) )
67 66 expd ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) → ( 𝑏 𝑆 𝑒 → ( 𝑒 𝑆 𝑏 𝑆 ) ) )
68 breq1 ( 𝑏 = 𝑒 → ( 𝑏 𝑆 𝑒 𝑆 ) )
69 68 biimprd ( 𝑏 = 𝑒 → ( 𝑒 𝑆 𝑏 𝑆 ) )
70 69 a1i ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) → ( 𝑏 = 𝑒 → ( 𝑒 𝑆 𝑏 𝑆 ) ) )
71 simpll2 ( ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) → ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) )
72 71 3ad2ant3 ( ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) → ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) )
73 72 adantl ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) → ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) )
74 67 70 73 mpjaod ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) → ( 𝑒 𝑆 𝑏 𝑆 ) )
75 orc ( 𝑏 𝑆 → ( 𝑏 𝑆 𝑏 = ) )
76 74 75 syl6 ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) → ( 𝑒 𝑆 → ( 𝑏 𝑆 𝑏 = ) ) )
77 breq2 ( 𝑒 = → ( 𝑏 𝑆 𝑒𝑏 𝑆 ) )
78 equequ2 ( 𝑒 = → ( 𝑏 = 𝑒𝑏 = ) )
79 77 78 orbi12d ( 𝑒 = → ( ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ↔ ( 𝑏 𝑆 𝑏 = ) ) )
80 73 79 syl5ibcom ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) → ( 𝑒 = → ( 𝑏 𝑆 𝑏 = ) ) )
81 simprl2 ( ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) → ( 𝑒 𝑆 𝑒 = ) )
82 81 3ad2ant3 ( ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) → ( 𝑒 𝑆 𝑒 = ) )
83 82 adantl ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) → ( 𝑒 𝑆 𝑒 = ) )
84 76 80 83 mpjaod ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) → ( 𝑏 𝑆 𝑏 = ) )
85 simp1l3 ( ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) → 𝑐𝐶 )
86 simp2l3 ( ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) → 𝑓𝐶 )
87 simp2r3 ( ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) → 𝑖𝐶 )
88 85 86 87 3jca ( ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) → ( 𝑐𝐶𝑓𝐶𝑖𝐶 ) )
89 potr ( ( 𝑇 Po 𝐶 ∧ ( 𝑐𝐶𝑓𝐶𝑖𝐶 ) ) → ( ( 𝑐 𝑇 𝑓𝑓 𝑇 𝑖 ) → 𝑐 𝑇 𝑖 ) )
90 4 88 89 syl2an ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) → ( ( 𝑐 𝑇 𝑓𝑓 𝑇 𝑖 ) → 𝑐 𝑇 𝑖 ) )
91 90 expd ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) → ( 𝑐 𝑇 𝑓 → ( 𝑓 𝑇 𝑖𝑐 𝑇 𝑖 ) ) )
92 breq1 ( 𝑐 = 𝑓 → ( 𝑐 𝑇 𝑖𝑓 𝑇 𝑖 ) )
93 92 biimprd ( 𝑐 = 𝑓 → ( 𝑓 𝑇 𝑖𝑐 𝑇 𝑖 ) )
94 93 a1i ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) → ( 𝑐 = 𝑓 → ( 𝑓 𝑇 𝑖𝑐 𝑇 𝑖 ) ) )
95 simpll3 ( ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) → ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) )
96 95 3ad2ant3 ( ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) → ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) )
97 96 adantl ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) → ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) )
98 91 94 97 mpjaod ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) → ( 𝑓 𝑇 𝑖𝑐 𝑇 𝑖 ) )
99 orc ( 𝑐 𝑇 𝑖 → ( 𝑐 𝑇 𝑖𝑐 = 𝑖 ) )
100 98 99 syl6 ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) → ( 𝑓 𝑇 𝑖 → ( 𝑐 𝑇 𝑖𝑐 = 𝑖 ) ) )
101 breq2 ( 𝑓 = 𝑖 → ( 𝑐 𝑇 𝑓𝑐 𝑇 𝑖 ) )
102 equequ2 ( 𝑓 = 𝑖 → ( 𝑐 = 𝑓𝑐 = 𝑖 ) )
103 101 102 orbi12d ( 𝑓 = 𝑖 → ( ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ↔ ( 𝑐 𝑇 𝑖𝑐 = 𝑖 ) ) )
104 97 103 syl5ibcom ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) → ( 𝑓 = 𝑖 → ( 𝑐 𝑇 𝑖𝑐 = 𝑖 ) ) )
105 simprl3 ( ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) → ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) )
106 105 3ad2ant3 ( ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) → ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) )
107 106 adantl ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) → ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) )
108 100 104 107 mpjaod ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) → ( 𝑐 𝑇 𝑖𝑐 = 𝑖 ) )
109 60 84 108 3jca ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) → ( ( 𝑎 𝑅 𝑔𝑎 = 𝑔 ) ∧ ( 𝑏 𝑆 𝑏 = ) ∧ ( 𝑐 𝑇 𝑖𝑐 = 𝑖 ) ) )
110 simp3rr ( ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) → ( 𝑑𝑔𝑒𝑓𝑖 ) )
111 110 adantl ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) → ( 𝑑𝑔𝑒𝑓𝑖 ) )
112 59 adantr ( ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) ∧ 𝑎 = 𝑔 ) → ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) )
113 breq1 ( 𝑎 = 𝑔 → ( 𝑎 𝑅 𝑑𝑔 𝑅 𝑑 ) )
114 equequ1 ( 𝑎 = 𝑔 → ( 𝑎 = 𝑑𝑔 = 𝑑 ) )
115 equcom ( 𝑔 = 𝑑𝑑 = 𝑔 )
116 114 115 bitrdi ( 𝑎 = 𝑔 → ( 𝑎 = 𝑑𝑑 = 𝑔 ) )
117 113 116 orbi12d ( 𝑎 = 𝑔 → ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ↔ ( 𝑔 𝑅 𝑑𝑑 = 𝑔 ) ) )
118 49 117 syl5ibcom ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) → ( 𝑎 = 𝑔 → ( 𝑔 𝑅 𝑑𝑑 = 𝑔 ) ) )
119 118 imp ( ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) ∧ 𝑎 = 𝑔 ) → ( 𝑔 𝑅 𝑑𝑑 = 𝑔 ) )
120 ordir ( ( ( 𝑑 𝑅 𝑔𝑔 𝑅 𝑑 ) ∨ 𝑑 = 𝑔 ) ↔ ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑔 𝑅 𝑑𝑑 = 𝑔 ) ) )
121 112 119 120 sylanbrc ( ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) ∧ 𝑎 = 𝑔 ) → ( ( 𝑑 𝑅 𝑔𝑔 𝑅 𝑑 ) ∨ 𝑑 = 𝑔 ) )
122 2 adantr ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) → 𝑅 Po 𝐴 )
123 38 adantl ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) → 𝑑𝐴 )
124 39 adantl ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) → 𝑔𝐴 )
125 po2nr ( ( 𝑅 Po 𝐴 ∧ ( 𝑑𝐴𝑔𝐴 ) ) → ¬ ( 𝑑 𝑅 𝑔𝑔 𝑅 𝑑 ) )
126 122 123 124 125 syl12anc ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) → ¬ ( 𝑑 𝑅 𝑔𝑔 𝑅 𝑑 ) )
127 126 adantr ( ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) ∧ 𝑎 = 𝑔 ) → ¬ ( 𝑑 𝑅 𝑔𝑔 𝑅 𝑑 ) )
128 121 127 orcnd ( ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) ∧ 𝑎 = 𝑔 ) → 𝑑 = 𝑔 )
129 128 ex ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) → ( 𝑎 = 𝑔𝑑 = 𝑔 ) )
130 129 necon3d ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) → ( 𝑑𝑔𝑎𝑔 ) )
131 83 adantr ( ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) ∧ 𝑏 = ) → ( 𝑒 𝑆 𝑒 = ) )
132 breq1 ( 𝑏 = → ( 𝑏 𝑆 𝑒 𝑆 𝑒 ) )
133 equequ1 ( 𝑏 = → ( 𝑏 = 𝑒 = 𝑒 ) )
134 equcom ( = 𝑒𝑒 = )
135 133 134 bitrdi ( 𝑏 = → ( 𝑏 = 𝑒𝑒 = ) )
136 132 135 orbi12d ( 𝑏 = → ( ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ↔ ( 𝑆 𝑒𝑒 = ) ) )
137 73 136 syl5ibcom ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) → ( 𝑏 = → ( 𝑆 𝑒𝑒 = ) ) )
138 137 imp ( ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) ∧ 𝑏 = ) → ( 𝑆 𝑒𝑒 = ) )
139 ordir ( ( ( 𝑒 𝑆 𝑆 𝑒 ) ∨ 𝑒 = ) ↔ ( ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑆 𝑒𝑒 = ) ) )
140 131 138 139 sylanbrc ( ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) ∧ 𝑏 = ) → ( ( 𝑒 𝑆 𝑆 𝑒 ) ∨ 𝑒 = ) )
141 3 adantr ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) → 𝑆 Po 𝐵 )
142 62 adantl ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) → 𝑒𝐵 )
143 63 adantl ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) → 𝐵 )
144 po2nr ( ( 𝑆 Po 𝐵 ∧ ( 𝑒𝐵𝐵 ) ) → ¬ ( 𝑒 𝑆 𝑆 𝑒 ) )
145 141 142 143 144 syl12anc ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) → ¬ ( 𝑒 𝑆 𝑆 𝑒 ) )
146 145 adantr ( ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) ∧ 𝑏 = ) → ¬ ( 𝑒 𝑆 𝑆 𝑒 ) )
147 140 146 orcnd ( ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) ∧ 𝑏 = ) → 𝑒 = )
148 147 ex ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) → ( 𝑏 = 𝑒 = ) )
149 148 necon3d ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) → ( 𝑒𝑏 ) )
150 107 adantr ( ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) ∧ 𝑐 = 𝑖 ) → ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) )
151 breq1 ( 𝑐 = 𝑖 → ( 𝑐 𝑇 𝑓𝑖 𝑇 𝑓 ) )
152 equequ1 ( 𝑐 = 𝑖 → ( 𝑐 = 𝑓𝑖 = 𝑓 ) )
153 equcom ( 𝑖 = 𝑓𝑓 = 𝑖 )
154 152 153 bitrdi ( 𝑐 = 𝑖 → ( 𝑐 = 𝑓𝑓 = 𝑖 ) )
155 151 154 orbi12d ( 𝑐 = 𝑖 → ( ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ↔ ( 𝑖 𝑇 𝑓𝑓 = 𝑖 ) ) )
156 97 155 syl5ibcom ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) → ( 𝑐 = 𝑖 → ( 𝑖 𝑇 𝑓𝑓 = 𝑖 ) ) )
157 156 imp ( ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) ∧ 𝑐 = 𝑖 ) → ( 𝑖 𝑇 𝑓𝑓 = 𝑖 ) )
158 ordir ( ( ( 𝑓 𝑇 𝑖𝑖 𝑇 𝑓 ) ∨ 𝑓 = 𝑖 ) ↔ ( ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ∧ ( 𝑖 𝑇 𝑓𝑓 = 𝑖 ) ) )
159 150 157 158 sylanbrc ( ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) ∧ 𝑐 = 𝑖 ) → ( ( 𝑓 𝑇 𝑖𝑖 𝑇 𝑓 ) ∨ 𝑓 = 𝑖 ) )
160 4 adantr ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) → 𝑇 Po 𝐶 )
161 86 adantl ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) → 𝑓𝐶 )
162 87 adantl ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) → 𝑖𝐶 )
163 po2nr ( ( 𝑇 Po 𝐶 ∧ ( 𝑓𝐶𝑖𝐶 ) ) → ¬ ( 𝑓 𝑇 𝑖𝑖 𝑇 𝑓 ) )
164 160 161 162 163 syl12anc ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) → ¬ ( 𝑓 𝑇 𝑖𝑖 𝑇 𝑓 ) )
165 164 adantr ( ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) ∧ 𝑐 = 𝑖 ) → ¬ ( 𝑓 𝑇 𝑖𝑖 𝑇 𝑓 ) )
166 159 165 orcnd ( ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) ∧ 𝑐 = 𝑖 ) → 𝑓 = 𝑖 )
167 166 ex ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) → ( 𝑐 = 𝑖𝑓 = 𝑖 ) )
168 167 necon3d ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) → ( 𝑓𝑖𝑐𝑖 ) )
169 130 149 168 3orim123d ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) → ( ( 𝑑𝑔𝑒𝑓𝑖 ) → ( 𝑎𝑔𝑏𝑐𝑖 ) ) )
170 111 169 mpd ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) → ( 𝑎𝑔𝑏𝑐𝑖 ) )
171 109 170 jca ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) → ( ( ( 𝑎 𝑅 𝑔𝑎 = 𝑔 ) ∧ ( 𝑏 𝑆 𝑏 = ) ∧ ( 𝑐 𝑇 𝑖𝑐 = 𝑖 ) ) ∧ ( 𝑎𝑔𝑏𝑐𝑖 ) ) )
172 35 36 171 3jca ( ( 𝜑 ∧ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) → ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ∧ ( ( ( 𝑎 𝑅 𝑔𝑎 = 𝑔 ) ∧ ( 𝑏 𝑆 𝑏 = ) ∧ ( 𝑐 𝑇 𝑖𝑐 = 𝑖 ) ) ∧ ( 𝑎𝑔𝑏𝑐𝑖 ) ) ) )
173 172 ex ( 𝜑 → ( ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) → ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ∧ ( ( ( 𝑎 𝑅 𝑔𝑎 = 𝑔 ) ∧ ( 𝑏 𝑆 𝑏 = ) ∧ ( 𝑐 𝑇 𝑖𝑐 = 𝑖 ) ) ∧ ( 𝑎𝑔𝑏𝑐𝑖 ) ) ) ) )
174 breq12 ( ( 𝑝 = ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ∧ 𝑞 = ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ) → ( 𝑝 𝑈 𝑞 ↔ ⟨ 𝑎 , 𝑏 , 𝑐𝑈𝑑 , 𝑒 , 𝑓 ⟩ ) )
175 174 3adant3 ( ( 𝑝 = ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ∧ 𝑞 = ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∧ 𝑟 = ⟨ 𝑔 , , 𝑖 ⟩ ) → ( 𝑝 𝑈 𝑞 ↔ ⟨ 𝑎 , 𝑏 , 𝑐𝑈𝑑 , 𝑒 , 𝑓 ⟩ ) )
176 1 xpord3lem ( ⟨ 𝑎 , 𝑏 , 𝑐𝑈𝑑 , 𝑒 , 𝑓 ⟩ ↔ ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ) )
177 175 176 bitrdi ( ( 𝑝 = ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ∧ 𝑞 = ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∧ 𝑟 = ⟨ 𝑔 , , 𝑖 ⟩ ) → ( 𝑝 𝑈 𝑞 ↔ ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ) ) )
178 breq12 ( ( 𝑞 = ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∧ 𝑟 = ⟨ 𝑔 , , 𝑖 ⟩ ) → ( 𝑞 𝑈 𝑟 ↔ ⟨ 𝑑 , 𝑒 , 𝑓𝑈𝑔 , , 𝑖 ⟩ ) )
179 178 3adant1 ( ( 𝑝 = ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ∧ 𝑞 = ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∧ 𝑟 = ⟨ 𝑔 , , 𝑖 ⟩ ) → ( 𝑞 𝑈 𝑟 ↔ ⟨ 𝑑 , 𝑒 , 𝑓𝑈𝑔 , , 𝑖 ⟩ ) )
180 1 xpord3lem ( ⟨ 𝑑 , 𝑒 , 𝑓𝑈𝑔 , , 𝑖 ⟩ ↔ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) )
181 179 180 bitrdi ( ( 𝑝 = ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ∧ 𝑞 = ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∧ 𝑟 = ⟨ 𝑔 , , 𝑖 ⟩ ) → ( 𝑞 𝑈 𝑟 ↔ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) )
182 177 181 anbi12d ( ( 𝑝 = ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ∧ 𝑞 = ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∧ 𝑟 = ⟨ 𝑔 , , 𝑖 ⟩ ) → ( ( 𝑝 𝑈 𝑞𝑞 𝑈 𝑟 ) ↔ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) )
183 an6 ( ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ↔ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) )
184 182 183 bitrdi ( ( 𝑝 = ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ∧ 𝑞 = ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∧ 𝑟 = ⟨ 𝑔 , , 𝑖 ⟩ ) → ( ( 𝑝 𝑈 𝑞𝑞 𝑈 𝑟 ) ↔ ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) ) )
185 breq12 ( ( 𝑝 = ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ∧ 𝑟 = ⟨ 𝑔 , , 𝑖 ⟩ ) → ( 𝑝 𝑈 𝑟 ↔ ⟨ 𝑎 , 𝑏 , 𝑐𝑈𝑔 , , 𝑖 ⟩ ) )
186 185 3adant2 ( ( 𝑝 = ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ∧ 𝑞 = ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∧ 𝑟 = ⟨ 𝑔 , , 𝑖 ⟩ ) → ( 𝑝 𝑈 𝑟 ↔ ⟨ 𝑎 , 𝑏 , 𝑐𝑈𝑔 , , 𝑖 ⟩ ) )
187 1 xpord3lem ( ⟨ 𝑎 , 𝑏 , 𝑐𝑈𝑔 , , 𝑖 ⟩ ↔ ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ∧ ( ( ( 𝑎 𝑅 𝑔𝑎 = 𝑔 ) ∧ ( 𝑏 𝑆 𝑏 = ) ∧ ( 𝑐 𝑇 𝑖𝑐 = 𝑖 ) ) ∧ ( 𝑎𝑔𝑏𝑐𝑖 ) ) ) )
188 186 187 bitrdi ( ( 𝑝 = ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ∧ 𝑞 = ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∧ 𝑟 = ⟨ 𝑔 , , 𝑖 ⟩ ) → ( 𝑝 𝑈 𝑟 ↔ ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ∧ ( ( ( 𝑎 𝑅 𝑔𝑎 = 𝑔 ) ∧ ( 𝑏 𝑆 𝑏 = ) ∧ ( 𝑐 𝑇 𝑖𝑐 = 𝑖 ) ) ∧ ( 𝑎𝑔𝑏𝑐𝑖 ) ) ) ) )
189 184 188 imbi12d ( ( 𝑝 = ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ∧ 𝑞 = ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∧ 𝑟 = ⟨ 𝑔 , , 𝑖 ⟩ ) → ( ( ( 𝑝 𝑈 𝑞𝑞 𝑈 𝑟 ) → 𝑝 𝑈 𝑟 ) ↔ ( ( ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ) ∧ ( ( 𝑑𝐴𝑒𝐵𝑓𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ) ∧ ( ( ( ( 𝑎 𝑅 𝑑𝑎 = 𝑑 ) ∧ ( 𝑏 𝑆 𝑒𝑏 = 𝑒 ) ∧ ( 𝑐 𝑇 𝑓𝑐 = 𝑓 ) ) ∧ ( 𝑎𝑑𝑏𝑒𝑐𝑓 ) ) ∧ ( ( ( 𝑑 𝑅 𝑔𝑑 = 𝑔 ) ∧ ( 𝑒 𝑆 𝑒 = ) ∧ ( 𝑓 𝑇 𝑖𝑓 = 𝑖 ) ) ∧ ( 𝑑𝑔𝑒𝑓𝑖 ) ) ) ) → ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ∧ ( 𝑔𝐴𝐵𝑖𝐶 ) ∧ ( ( ( 𝑎 𝑅 𝑔𝑎 = 𝑔 ) ∧ ( 𝑏 𝑆 𝑏 = ) ∧ ( 𝑐 𝑇 𝑖𝑐 = 𝑖 ) ) ∧ ( 𝑎𝑔𝑏𝑐𝑖 ) ) ) ) ) )
190 173 189 syl5ibrcom ( 𝜑 → ( ( 𝑝 = ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ∧ 𝑞 = ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∧ 𝑟 = ⟨ 𝑔 , , 𝑖 ⟩ ) → ( ( 𝑝 𝑈 𝑞𝑞 𝑈 𝑟 ) → 𝑝 𝑈 𝑟 ) ) )
191 190 rexlimdvw ( 𝜑 → ( ∃ 𝑖𝐶 ( 𝑝 = ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ∧ 𝑞 = ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∧ 𝑟 = ⟨ 𝑔 , , 𝑖 ⟩ ) → ( ( 𝑝 𝑈 𝑞𝑞 𝑈 𝑟 ) → 𝑝 𝑈 𝑟 ) ) )
192 191 rexlimdvw ( 𝜑 → ( ∃ 𝑓𝐶𝑖𝐶 ( 𝑝 = ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ∧ 𝑞 = ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∧ 𝑟 = ⟨ 𝑔 , , 𝑖 ⟩ ) → ( ( 𝑝 𝑈 𝑞𝑞 𝑈 𝑟 ) → 𝑝 𝑈 𝑟 ) ) )
193 192 rexlimdvw ( 𝜑 → ( ∃ 𝑐𝐶𝑓𝐶𝑖𝐶 ( 𝑝 = ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ∧ 𝑞 = ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∧ 𝑟 = ⟨ 𝑔 , , 𝑖 ⟩ ) → ( ( 𝑝 𝑈 𝑞𝑞 𝑈 𝑟 ) → 𝑝 𝑈 𝑟 ) ) )
194 193 rexlimdvw ( 𝜑 → ( ∃ 𝐵𝑐𝐶𝑓𝐶𝑖𝐶 ( 𝑝 = ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ∧ 𝑞 = ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∧ 𝑟 = ⟨ 𝑔 , , 𝑖 ⟩ ) → ( ( 𝑝 𝑈 𝑞𝑞 𝑈 𝑟 ) → 𝑝 𝑈 𝑟 ) ) )
195 194 rexlimdvw ( 𝜑 → ( ∃ 𝑒𝐵𝐵𝑐𝐶𝑓𝐶𝑖𝐶 ( 𝑝 = ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ∧ 𝑞 = ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∧ 𝑟 = ⟨ 𝑔 , , 𝑖 ⟩ ) → ( ( 𝑝 𝑈 𝑞𝑞 𝑈 𝑟 ) → 𝑝 𝑈 𝑟 ) ) )
196 195 rexlimdvw ( 𝜑 → ( ∃ 𝑏𝐵𝑒𝐵𝐵𝑐𝐶𝑓𝐶𝑖𝐶 ( 𝑝 = ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ∧ 𝑞 = ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∧ 𝑟 = ⟨ 𝑔 , , 𝑖 ⟩ ) → ( ( 𝑝 𝑈 𝑞𝑞 𝑈 𝑟 ) → 𝑝 𝑈 𝑟 ) ) )
197 196 rexlimdvw ( 𝜑 → ( ∃ 𝑔𝐴𝑏𝐵𝑒𝐵𝐵𝑐𝐶𝑓𝐶𝑖𝐶 ( 𝑝 = ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ∧ 𝑞 = ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∧ 𝑟 = ⟨ 𝑔 , , 𝑖 ⟩ ) → ( ( 𝑝 𝑈 𝑞𝑞 𝑈 𝑟 ) → 𝑝 𝑈 𝑟 ) ) )
198 197 rexlimdvw ( 𝜑 → ( ∃ 𝑑𝐴𝑔𝐴𝑏𝐵𝑒𝐵𝐵𝑐𝐶𝑓𝐶𝑖𝐶 ( 𝑝 = ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ∧ 𝑞 = ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∧ 𝑟 = ⟨ 𝑔 , , 𝑖 ⟩ ) → ( ( 𝑝 𝑈 𝑞𝑞 𝑈 𝑟 ) → 𝑝 𝑈 𝑟 ) ) )
199 198 rexlimdvw ( 𝜑 → ( ∃ 𝑎𝐴𝑑𝐴𝑔𝐴𝑏𝐵𝑒𝐵𝐵𝑐𝐶𝑓𝐶𝑖𝐶 ( 𝑝 = ⟨ 𝑎 , 𝑏 , 𝑐 ⟩ ∧ 𝑞 = ⟨ 𝑑 , 𝑒 , 𝑓 ⟩ ∧ 𝑟 = ⟨ 𝑔 , , 𝑖 ⟩ ) → ( ( 𝑝 𝑈 𝑞𝑞 𝑈 𝑟 ) → 𝑝 𝑈 𝑟 ) ) )
200 34 199 biimtrid ( 𝜑 → ( ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑞 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑟 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ) → ( ( 𝑝 𝑈 𝑞𝑞 𝑈 𝑟 ) → 𝑝 𝑈 𝑟 ) ) )
201 200 imp ( ( 𝜑 ∧ ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑞 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑟 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ) ) → ( ( 𝑝 𝑈 𝑞𝑞 𝑈 𝑟 ) → 𝑝 𝑈 𝑟 ) )
202 22 201 ispod ( 𝜑𝑈 Po ( ( 𝐴 × 𝐵 ) × 𝐶 ) )