Step |
Hyp |
Ref |
Expression |
1 |
|
1z |
⊢ 1 ∈ ℤ |
2 |
|
ppival2 |
⊢ ( 1 ∈ ℤ → ( π ‘ 1 ) = ( ♯ ‘ ( ( 2 ... 1 ) ∩ ℙ ) ) ) |
3 |
1 2
|
ax-mp |
⊢ ( π ‘ 1 ) = ( ♯ ‘ ( ( 2 ... 1 ) ∩ ℙ ) ) |
4 |
|
1lt2 |
⊢ 1 < 2 |
5 |
|
2z |
⊢ 2 ∈ ℤ |
6 |
|
fzn |
⊢ ( ( 2 ∈ ℤ ∧ 1 ∈ ℤ ) → ( 1 < 2 ↔ ( 2 ... 1 ) = ∅ ) ) |
7 |
5 1 6
|
mp2an |
⊢ ( 1 < 2 ↔ ( 2 ... 1 ) = ∅ ) |
8 |
4 7
|
mpbi |
⊢ ( 2 ... 1 ) = ∅ |
9 |
8
|
ineq1i |
⊢ ( ( 2 ... 1 ) ∩ ℙ ) = ( ∅ ∩ ℙ ) |
10 |
|
0in |
⊢ ( ∅ ∩ ℙ ) = ∅ |
11 |
9 10
|
eqtri |
⊢ ( ( 2 ... 1 ) ∩ ℙ ) = ∅ |
12 |
11
|
fveq2i |
⊢ ( ♯ ‘ ( ( 2 ... 1 ) ∩ ℙ ) ) = ( ♯ ‘ ∅ ) |
13 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
14 |
12 13
|
eqtri |
⊢ ( ♯ ‘ ( ( 2 ... 1 ) ∩ ℙ ) ) = 0 |
15 |
3 14
|
eqtri |
⊢ ( π ‘ 1 ) = 0 |