Metamath Proof Explorer


Theorem ppi2i

Description: Inference form of ppinprm . (Contributed by Mario Carneiro, 21-Sep-2014)

Ref Expression
Hypotheses ppi1i.m 𝑀 ∈ ℕ0
ppi1i.n 𝑁 = ( 𝑀 + 1 )
ppi1i.p ( π𝑀 ) = 𝐾
ppi2i.1 ¬ 𝑁 ∈ ℙ
Assertion ppi2i ( π𝑁 ) = 𝐾

Proof

Step Hyp Ref Expression
1 ppi1i.m 𝑀 ∈ ℕ0
2 ppi1i.n 𝑁 = ( 𝑀 + 1 )
3 ppi1i.p ( π𝑀 ) = 𝐾
4 ppi2i.1 ¬ 𝑁 ∈ ℙ
5 2 fveq2i ( π𝑁 ) = ( π ‘ ( 𝑀 + 1 ) )
6 1 nn0zi 𝑀 ∈ ℤ
7 2 eleq1i ( 𝑁 ∈ ℙ ↔ ( 𝑀 + 1 ) ∈ ℙ )
8 4 7 mtbi ¬ ( 𝑀 + 1 ) ∈ ℙ
9 ppinprm ( ( 𝑀 ∈ ℤ ∧ ¬ ( 𝑀 + 1 ) ∈ ℙ ) → ( π ‘ ( 𝑀 + 1 ) ) = ( π𝑀 ) )
10 6 8 9 mp2an ( π ‘ ( 𝑀 + 1 ) ) = ( π𝑀 )
11 5 10 3 3eqtri ( π𝑁 ) = 𝐾