Metamath Proof Explorer


Theorem ppi3

Description: The prime-counting function ppi at 3 . (Contributed by Mario Carneiro, 21-Sep-2014)

Ref Expression
Assertion ppi3 ( π ‘ 3 ) = 2

Proof

Step Hyp Ref Expression
1 2nn0 2 ∈ ℕ0
2 df-3 3 = ( 2 + 1 )
3 ppi2 ( π ‘ 2 ) = 1
4 3prm 3 ∈ ℙ
5 1 2 3 4 ppi1i ( π ‘ 3 ) = ( 1 + 1 )
6 df-2 2 = ( 1 + 1 )
7 5 6 eqtr4i ( π ‘ 3 ) = 2